Bài 11: Chia đa thức cho đơn thức

HA

cho a,b,c khác 0 sao cho a^3.b^3 + a^3.c^3 = 3.a^2.b^2.c^2. Tính M= (1/a+b). (1/b+c). 1/c+a

AH
27 tháng 8 2017 lúc 9:33

Lời giải:

Đặt \((ab,bc,ac)=(x,y,z)\)

Theo bài ra ta có:

\(x^3+y^3+z^3=3xyz\Leftrightarrow x^2+y^3+z^3-3xyz=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

TH1:

\(x+y+z=0\) \(\Leftrightarrow ab+bc+ac=0\)

\(\Rightarrow M=\frac{1}{(a+b)(b+c)(c+a)}=\frac{1}{(a+b+c)(ab+bc+ac)-abc}=\frac{-1}{abc}\)

TH2:

\(x^2+y^2+z^2=xy+yz+xz\)

Theo BĐT AM-GM ta luôn có \(x^2+y^2+z^2\geq xy+yz+xz\)

Dấu bằng xảy ra khi

\(x=y=z\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\)

Khi đó, \(M=\frac{1}{(a+b)(b+c)(c+a)}=\frac{1}{2a.2b.2c}=\frac{1}{8abc}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KS
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
PU
Xem chi tiết
TH
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết