Bài 8: Tính chất của dãy tỉ số bằng nhau

ND

Câu 1: Tìm 2 số x,y biết rằng:

a,\(\frac{x}{2}=\frac{y}{3}\) và 4x-3y =-2

b,\(\frac{x}{4}=\frac{y}{5}\) và xy=20

Câu 2: Tìm 3 số x,y,z biết rằng:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và x + y + z = 9

NT
13 tháng 7 2020 lúc 20:44

Câu 1:

a) Ta có: \(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\)

Ta có: 4x-3y=-2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

Do đó:

\(\left\{{}\begin{matrix}\frac{4x}{8}=2\\\frac{3y}{9}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=16\\3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

Vậy: (x,y)=(4;6)

b) Đặt \(\frac{x}{4}=\frac{y}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

Ta có: xy=20

\(\Leftrightarrow4k\cdot5k=20\)

\(\Leftrightarrow20k^2=20\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4k=4\cdot1=4\\y=5k=5\cdot1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4k=4\cdot\left(-1\right)=-4\\y=5k=5\cdot\left(-1\right)=-5\end{matrix}\right.\end{matrix}\right.\)

Vậy: (x,y)={(4;5);(-4;-5)}

Câu 2:

Ta có: \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\\x+y+z=9\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{9}{9}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot1=2\\y=3\cdot1=3\\y=4\cdot1=4\end{matrix}\right.\)

Vậy: (x,y,z)=(2;3;4)

Bình luận (0)
TG
13 tháng 7 2020 lúc 20:46

Câu 1

a) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{4x}{8}=\frac{3y}{9}\)

\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

\(\frac{4x}{8}=2\Rightarrow x=\frac{8.2}{4}=4\)

\(\frac{3y}{9}=2\Rightarrow y=\frac{2.9}{3}=6\)

Vậy: x = 4; y = 6

b) Đặt: \(\frac{x}{4}=\frac{y}{5}=k\)

Ta có:\(\left\{{}\begin{matrix}\frac{x}{4}=k\Rightarrow x=4k\\\frac{y}{5}=k\Rightarrow y=5k\end{matrix}\right.\)

\(x.y=20\)

=> 4k . 5k = 20

=> 20k = 20

=> k = 20 : 20 = 1

\(\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)

Vậy: x = 4; y = 5

Câu 2:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{9}{9}=1\)

Ta có: \(\left\{{}\begin{matrix}\frac{x}{2}=1\Rightarrow x=2.1=2\\\frac{y}{3}=1\Rightarrow y=3.1=3\\\frac{z}{4}=1\Rightarrow z=4.1=4\end{matrix}\right.\)

Vậy: x = 2; y = 3; z = 4

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
ND
Xem chi tiết
MT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết
LT
Xem chi tiết