Bài 8: Tính chất của dãy tỉ số bằng nhau

NH

1. tìm x, y, z biết:

a. \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z= 50

b. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=810

NT
3 tháng 8 2020 lúc 19:21

Bài 1: Tìm x,y,z

a) Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

mà 2x+3y-z=50

nên áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)

Do đó:

\(\left\{{}\begin{matrix}2x-2=5\cdot4\\3y-6=5\cdot9\\z-3=5\cdot4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=20+2=22\\3y=45+6=51\\z=20+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy: (x,y,z)=(11;17;23)

b) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Ta có: xyz=810

\(\Leftrightarrow2k\cdot3k\cdot5k=810\)

\(\Leftrightarrow30\cdot k^3=810\)

\(\Leftrightarrow k^3=27\)

hay k=3

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=3\cdot3=9\\z=5\cdot3=15\end{matrix}\right.\)

Vậy: (x,y,z)=(6;9;15)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
ND
Xem chi tiết
LT
Xem chi tiết
DT
Xem chi tiết
TN
Xem chi tiết
MT
Xem chi tiết
ND
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết