GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N
a) chứng minh tứ giác BMHD, BMEC nội tiếp
b) chứng minh MC là tia phân giác của góc EMD
c) chứng minh H và N đối xứng với nhau qua BC
d) chứng minh OC vuông góc BE
2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e
a) chứng minh tứ giác bdmc, adhm nội tiếp
b) chứng minh ef//md
c) vẽ đường kính bk của (o). chứng minh ah=ck
d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)
3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e
a) chứng minh tứ giác mnhc, bdnc nội tiếp
b) chứng minh h và e đối xứng với nhau qua bc
c) chứng minh oa vuông góc dn
d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng
Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng:
a) CD = CE. b) \(\Delta BHD\) cân. c) CD = CH.
Mn giúp mình từ ý 2 câu b nhé
Cho tam giác ABC có 3 góc nhọn, nội tiếp (O) , các đường cao AD, BE, CF , , cắt nhau tại điểm H . Gọi M là trung điểm của BC , N là điểm đối xứng với D qua M . Đường thẳng NH cắt đường thẳng qua A song song với BC tại P . Gọi I là điểm đối xứng với O qua BC .
a. Chứng minh: BFEC là tứ giác nội tiếp.
b. Chứng minh: tam giác APH đồng dạng tam giác HDN và IH= IB= IC
c, Đường tròn ngoại tiếp tam giác BHC cắt đường tròn ngoại tiếp tam giác AHP tại điểm thứ 2 là G khác H . Chứng minh: góc GHM = 90 độ
Cho tam giác ABC ngoại tiếp (O) có AB=c, BC=a,AC =b. Gọi D,E,F là tiếp điểm AB, BC, AC với (O). ED và EF cắt đường thẳng qua A //BC tại G, H.
1, Tính DG/DE theo a,b,c
2,Chứng minh GH,HD,EO đồng quy
3, Gọi EO cắt GH tại Q. Chứng minh tâm đường tròn nội tiếp tam giác DFQ thuộc (O)
Cho tam giác ABC nội tiếp đường tròn (O) . Hai đường cao BD,CE cắt nhau tại H Và cắt đường tròn lần lượt ở M và N.
Cm: a, Tam giác AMN cân.
b, H và M đối xứng M qua AC và H đối xứng N qua AB.
c, OA vuông góc với DE
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm . Hai đường cao AM và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại Q và D. Chứng minh:
a. BFHM nội tiếp
b. ACMF nội tiếp
c. BC là tia phân giác của HBQ
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho hai đường tròn (O ; R) và (O' ; R') cắt nhau tại A và B (OO' >R > R').Trên nửa mặt phẳng bờ là OO' có chứa điểm A , kẻ tiếp tuyến chung MN của hai đường tròn trên (với M thuộc (O) và N thuộc (O')) . Biết BM cắt (O') tại điểm E nằm trong đường tròn (O) và đường thẳng AB cắt MN tại I.
a) Chứng minh : góc MAN + góc MBN = 180 độ và I là trung điểm của MN. b) Qua B , kẻ đường thẳng (d) song song với MN , (d) cắt (O) tại C và cắt (O') tại D ( với C, D khác B) . Gọi P,Q lần lượt là trung điểm của CD và EM . Chứng minh tam giác AME đồng dạng với tam giác ACD và các điểm A,B,P,Q cùng thuộc một đường tròn .