Bài 1: Định lý Talet trong tam giác

DQ

Bài 15. Cho tam giác ABC vuông tại A có AB = 6, AC = 8, AD là đường phân giác. Tính: a) Độ dài các đoạn thẳng BC, DB, DC; b) Khoảng cách từ điểm D đến đường thẳng AC; c) Độ dài đường phân giác AD. 

NT
13 tháng 3 2024 lúc 19:36

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100=10^2\)

=>BC=10(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{6}=\dfrac{DC}{8}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

mà DB+DC=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)

=>\(DB=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right);DC=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right)\)

b: 

Kẻ DH\(\perp\)AC

=>DH là khoảng cách từ D đến AC

DH\(\perp\)AC

AB\(\perp\)AC

Do đó: DH//AB

Xét ΔCAB có DH//AB

nên \(\dfrac{DH}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{DH}{6}=\dfrac{40}{7}:10=\dfrac{4}{7}\)

=>\(DH=\dfrac{24}{7}\)(cm)

c: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45\)

\(=\dfrac{24\sqrt{2}}{7}\left(cm\right)\)

Bình luận (1)

Các câu hỏi tương tự
VT
Xem chi tiết
HN
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết
PN
Xem chi tiết
1H
Xem chi tiết
TH
Xem chi tiết
TM
Xem chi tiết