Bài 1: Định lý Talet trong tam giác

NM

1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.

2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.

AH
30 tháng 1 2021 lúc 20:55

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

Bình luận (0)
AH
30 tháng 1 2021 lúc 20:59

Hình vẽ 1:

undefined

Bình luận (0)
AH
30 tháng 1 2021 lúc 21:36

2. 

Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,E$ thẳng hàng ta có:

$\frac{AE}{EC}.\frac{IM}{AI}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AE}{EC}=\frac{AI}{2IM}$

$\Rightarrow \frac{AE}{AC}=\frac{AI}{AI+2IM}$

$\Rightarrow \frac{AC}{AE}=\frac{AI+2IM}{AI}(1)$Lại áp dụng tính chất tia phân giác và định lý Talet:

$\frac{AC}{AB}=\frac{CD}{BD}=\frac{CM+DM}{BD}=\frac{BM+DM}{BD}$

$=\frac{BM}{BD}+\frac{DM}{BD}=\frac{AM}{AI}+\frac{IM}{AI}=\frac{AM+IM}{AI}=\frac{AI+2IM}{AI}(2)$

Từ $(1);(2)\Rightarrow \frac{AC}{AB}=\frac{AC}{AE}$

$\Rightarrow AB=AE$ (đpcm)

Bình luận (0)
AH
30 tháng 1 2021 lúc 21:40

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
1H
Xem chi tiết
TM
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
QM
Xem chi tiết
QM
Xem chi tiết