Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

VT

Bai 1: tim x

a) 5x(x-3)2 - 5(x-1)3 + 15(x+2)(x-2)= 5

b) (x+2) (3-4x) = x2 + 4x + 4

c) x2 (x2 + 1) - x2 -1= 0

DT
30 tháng 9 2017 lúc 22:58

a/ \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-4\right)=5\)

\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60-5=0\)

\(\Leftrightarrow30x-60=0\)

\(\Leftrightarrow30x=60\)

\(\Leftrightarrow x=2\)

vậy x=2

b/ \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)

\(\Leftrightarrow3x-4x^2+6-8x=x^2+4x+4\)

\(\Leftrightarrow x^2+4x^2+4x+18x-3x+4-6=0\)

\(\Leftrightarrow5x^2+9x-2=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-2\end{matrix}\right.\)

vậy \(x=\dfrac{1}{5}\) hoặc \(x=-2\)

c/ \(x^2\left(x^2+1\right)-x^2-1=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)=0\)

vì x2+1 >0 nên x2 - 1 = 0 \(\Rightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

vậy \(x=1\) hoặc \(x=-1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
TN
Xem chi tiết
TP
Xem chi tiết
HH
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết