Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

H24

Bài 1 : Tìm giá trị nhỏ nhất :

a. 9x2 - 2x - 1

b. (2x - 5 )( x - 1 )

Bài 2 : Tìm giá trị lớn nhất :

a. - x2 - x - 7

b. 5 - 2x - 2x

c. - 4x - x2 - 1

d. ( 5 - x )( 2x + 3 )

AH
24 tháng 9 2020 lúc 20:21

Bài 1:

a) $9x^2-2x-1=(3x)^2-2.3x.\frac{1}{3}+(\frac{1}{3})^2-\frac{10}{9}$

$=(3x-\frac{1}{3})^2-\frac{10}{9}$

$\geq 0-\frac{10}{9}=\frac{-10}{9}$

Vậy GTNN của biểu thức là $\frac{-10}{9}$. Giá trị này đạt tại $3x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{9}$

b)

$(2x-5)(x-1)=2x^2-7x+5=2(x^2-\frac{7}{2}x)+5$

$=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{9}{8}$

$=2(x-\frac{7}{4})^2-\frac{9}{8}$

$\geq 2.0-\frac{9}{8}=-\frac{9}{8}$

Vậy GTNN của biểu thức là $\frac{-9}{8}$ tại $x=\frac{7}{4}$

Bình luận (0)
 Khách vãng lai đã xóa
AH
24 tháng 9 2020 lúc 20:26

Bài 2:

a) $-x^2-x-7=-7-(x^2+x)=-\frac{27}{4}-(x^2+x+\frac{1}{4})$

$=\frac{-27}{4}-(x+\frac{1}{2})^2$

$\leq \frac{-27}{4}-0=\frac{-27}{4}$

Vậy GTLN của biểu thức là $\frac{-27}{4}$ khi $x=\frac{-1}{2}$

b) Biểu thức không có max. Bạn xem lại

c)

$-4x-x^2-1=-1-(x^2+4x)=-5-(x^2+4x+4)=-5-(x+2)^2$

$\leq -5-0=-5$

Vậy GTLN của biểu thức là $-5$. Giá trị này đạt được tại $x+2=0\Leftrightarrow x=-2$

d)

$(5-x)(2x+3)=-2x^2+7x+15=15-(2x^2-7x)$

$=\frac{169}{8}-2(x-\frac{7}{4})^2\leq \frac{169}{8}$

Vậy GTLN của biểu thức là $\frac{169}{8}$ khi $x=\frac{7}{4}$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
RD
Xem chi tiết
PL
Xem chi tiết
HH
Xem chi tiết
GO
Xem chi tiết
BM
Xem chi tiết
TA
Xem chi tiết
NY
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết