Bài 1: Tập hợp Q các số hữu tỉ

SK

a) Chứng tỏ rằng nếu \(\dfrac{a}{c}< \dfrac{c}{d}\left(b>0,d>0\right)\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

b) Hãy viết ba số hữu tỉ xen giữa \(-\dfrac{1}{3}\) và \(-\dfrac{1}{4}\)

MC
26 tháng 5 2017 lúc 22:32

Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)

Thêm ab và cả hai vế của (1) :

ad + ab < bc + ab

a(b+d) < b(a+c)

=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)

Thêm cd vào hai vế của (1) :

ad + cd < bc + cd

d( a+c) < c( b+d )

=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)

Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
MP
Xem chi tiết
SK
Xem chi tiết
CT
Xem chi tiết
CV
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết