a) = \(4x^4+4x^2+1\)
= \(\left(2x^2+1\right)^2\)
b) = \(4x^4+36x^2+81-36x^2\)
= \(\left(2x^2+9\right)^2\)
c) = \(64x^4+16x^2y^2+y^4-16x^2y^2\)
= \(\left(8x^2+y^2\right)^2\)
d) = \(x^8+4x^4+4-4x^4\)
= \(\left(x^4+2\right)^2\)
e) = \(\left(x^4+2x^2+1\right)-x^2\)
= \(\left(x^2+1\right)^2-x^2\)
= \(\left(x^2+1-x\right).\left(x^2+1+x\right)\)
f) = \(\left(x^7-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
= \(x.\left(x^3-1\right).\left(x^3+1\right)+x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(\left(x^2+x+1\right).\left(x-1\right).\left(x^4+x\right)+x^2.\left(x-1\right).\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right).\left(x^5-x^4+x^3-1+1\right)\)
c/=64x^4+16x^2y^2+y^4-16x^2y^2
=(8x^2+y^2)^2-(4xy)^2
=(8x^2+y^2+4xy)(8x^2+y^2-4xy)