Bài 6: Lũy thừa của một số hữu tỉ (tiếp theo...)

MH
4 tháng 10 2023 lúc 8:30

\(2^x+11.3^4=12^x\)

\(2^x\)chẵn, \(11.3^4\) lẻ => \(2^x+11.3^4\) lẻ(1)

Mà \(12^x\) chẵn(2)

Từ (1) và (2) => \(VT\ne VP\)

=> không tồn tại x thỏa mã phương trình

Bình luận (2)
MH
4 tháng 10 2023 lúc 8:41

Cách trên là với điều kiện \(x\in N\cdot\) nha, cách này là với trường hợp không có điều kiện của x

\(2^x+11.3^4=12^x=2^{2x}.3^x\)

\(2^x\left(6^x-1\right)=11.3^4\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2^x=11\\6^x-1=3^4\end{matrix}\right.\\\left\{{}\begin{matrix}6^x=12\\2^x=3^4\end{matrix}\right.\end{matrix}\right.\)

+) Nếu x=0 => Loại

+) Nếu \(x\in N^{\cdot}\)

-) \(2^x=11\) (Loại vì 2x chãn)

-) \(6^x=12\Leftrightarrow2^x.3^x=2^2.3\)

\(\Leftrightarrow\left\{{}\begin{matrix}2^x=2^2\\3^x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=1\end{matrix}\right.\) (Loại)

+) Nếu x>0; \(x\notin Z\)

=> \(2^x;6^x\notin Z\) (Loại)

+) Nếu x<0 => \(\left\{{}\begin{matrix}2^x< 2\\6^x< 6\end{matrix}\right.\) (Loại)

=> Không tồn tại x thỏa mãn phương trình

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
PM
Xem chi tiết
TT
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết