Bài 2: Cộng, trừ số hữu tỉ

VH

Tính thuận tiện \(\frac{1}{100\times99}-\frac{1}{99\times98}-\frac{1}{98\times97}-...-\frac{1}{3.2}\)\(-\frac{1}{2.1}\)

MS
19 tháng 11 2017 lúc 12:57

\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(pt\Leftrightarrow\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{99.100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)

\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{99.100}-\left(1-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{99}-\dfrac{1}{100}-1-\dfrac{1}{99}\)

\(=-\dfrac{1}{100}-1=-\dfrac{101}{100}\)

Bình luận (0)
NH
20 tháng 11 2017 lúc 19:45

\(\Rightarrow=\dfrac{1}{100.99}-\left(\dfrac{1}{99.98}+\dfrac{1}{99.97}+...+\dfrac{1}{2.1}\right)\)

\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-....+\dfrac{1}{2}-1\right)\)

\(\Rightarrow\dfrac{1}{100}-\left(\dfrac{1}{99}-1\right)\)

\(\Rightarrow\dfrac{1}{100}-\dfrac{-98}{99}\)

=......... bn tính nhé

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết