Bài 7: Tỉ lệ thức

LP

1 a trên 3 bằng b trên 5 bằng c trên 7 và a trừ b cộng c bằng 75

2 a trên b bằng 3 trên 5; b trên c bằng 4 trên 7 và a cộng b trừ c bằng 9

3 5a bằng 3b và a cộng b bằng 32

NT
14 tháng 2 2020 lúc 10:36

1: Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a-b+c=75

Áp dụng t/c của dãy tỉ số bằng nhau, ta được

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a-b+c}{3-5+7}=\frac{75}{5}=15\)

Do đó, ta được

\(\left\{{}\begin{matrix}\frac{a}{3}=15\\\frac{b}{5}=15\\\frac{c}{7}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=75\\c=105\end{matrix}\right.\)

Vậy: a=45; b=75; c=105

2)

Ta có: \(\frac{a}{b}=\frac{3}{5}\)

\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)

\(\Rightarrow\frac{a}{12}=\frac{b}{20}\)(1)

Ta có: \(\frac{b}{c}=\frac{4}{7}\)

\(\Rightarrow\frac{b}{4}=\frac{c}{7}\)

\(\Rightarrow\frac{b}{20}=\frac{c}{35}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\)

Ta có: \(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}\) và a+b-c=9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{a}{12}=\frac{b}{20}=\frac{c}{35}=\frac{a+b-c}{12+20-35}=\frac{9}{-3}=-3\)

Do đó, ta có

\(\left\{{}\begin{matrix}\frac{a}{12}=-3\\\frac{b}{20}=-3\\\frac{c}{35}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-36\\b=-60\\c=-105\end{matrix}\right.\)

Vậy: a=-36; b=-60; c=-105

3) Ta có: 5a=3b

\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)

Ta có: \(\frac{a}{3}=\frac{b}{5}\)và a+b=32

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{32}{8}=4\)

Do đó, ta có:

\(\left\{{}\begin{matrix}\frac{a}{3}=4\\\frac{b}{5}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12\\b=20\end{matrix}\right.\)

Vậy: a=12; b=20

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KK
Xem chi tiết
HK
Xem chi tiết
LA
Xem chi tiết
PN
Xem chi tiết
VH
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
CV
Xem chi tiết