Phân tích các đa thức sau thành nhân tử :
a) \(x^3-2x^2+x\)
b) \(2x^2+4x+2-2y^2\)
c) \(2xy-x^2-y^2+16\)
Phân tích các đa thức sau thành nhân tử :
a) \(x^3-2x^2+x\)
b) \(2x^2+4x+2-2y^2\)
c) \(2xy-x^2-y^2+16\)
Chứng minh rằng \(\left(5n+2\right)^2-4\) chia hết cho 5 với mọi số nguyên n ?
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
Trả lời bởi Tuyết Nhi MelodyPhân tích các đa thức sau thành nhân tử :
a) \(x^2-3x+2\)
(Gợi ý : ta không thể áp dụng ngay các phương pháp đã học để phân tích nhưng nếu tách hạng tử \(-3x=-x-2x\) thì ta có \(x^2-3x+2=x^2-x-2x+2\) và từ đó dễ dàng phân tích tiếp
b) \(x^2+x-6\)
c) \(x^2+5x+6\)
Bài giải:
a) x2 – 3x + 2 = a) x2 – x - 2x + 2 = x(x - 1) - 2(x - 1) = (x - 1)(x - 2)
Hoặc x2 – 3x + 2 = x2 – 3x - 4 + 6
= x2 - 4 - 3x + 6
= (x - 2)(x + 2) - 3(x -2)
= (x - 2)(x + 2 - 3) = (x - 2)(x - 1)
b) x2 + x – 6 = x2 + 3x - 2x – 6
= x(x + 3) - 2(x + 3)
= (x + 3)(x - 2).
c) x2 + 5x + 6 = x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
Trả lời bởi Tuyết Nhi MelodyPhân tích các đa thức sau thành nhân tử :
a) \(x^3+2x^2y+xy^2-9x\)
b) \(2x-2y-x^2+2xy-y^2\)
c) \(x^4-2x^2\)
Bài giải:
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
Trả lời bởi Tuyết Nhi MelodyTìm x, biết :
a) \(x^3-\dfrac{1}{4}x=0\)
b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
c) \(x^2\left(x-3\right)+12-4x=0\)
Bài giải:
a) x3 – x = 0 => x(x2 –) = 0
=>x(x - )(x + ) = 0
Hoặc x = 0
Hoặc x - = 0 => x =
Hoặc x + = 0 => x = -
Vậy x = 0; x = -; x = .
b) (2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0
(x - 4)(3x + 2) = 0
Hoặc x - 4 = 0 => x = 4
Hoặc 3x + 2 = 0 => 3x = 2 => x = -
Vậy x = 4; x = -.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) - 4(x -3)= 0
(x - 3)(x2- 22) = 0
(x - 3)(x - 2)(x + 2) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc x - 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
Trả lời bởi Tuyết Nhi MelodyTính nhanh giá trị của đa thức :
a) \(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\) tại \(x=49,75\)
b) \(x^2-y^2-2y-1\) tại \(x=93;y=6\)
Bài giải:
a) x2 + x+ tại x = 49,75
Ta có: x2 + x+ = x2 + 2 . x . + =
Với x = 49,75: = (49,75 + 0,25)2 = 502 = 2500
b) x2 – y2 – 2y – 1 tại x = 93 và y = 6
Ta có: x2 – y2 – 2y – 1 = x2 – (y2 + 2y + 1)
= x2 - (y + 1)2 = (x - y - 1)(x + y + 1)
Với x = 93, y = 6: (93 - 6 - 1)(93 + 6 + 1) = 86 . 100 = 8600
Trả lời bởi Tuyết Nhi MelodyPhân tích các đa thức sau thành nhân tử :
a) \(x^2-4x+3\)
b) \(x^2+5x+4\)
c) \(x^2-x-6\)
d) \(x^4+4\)
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Chứng minh rằng \(n^3-n\) chia hết cho 6 với mọi số nguyên n ?
Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)
Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.
Phân tích thành nhân tử :
a) \(x^4+2x^3+x^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(5x^2-10xy+5y^2-20z^2\)
a) \(x^4+2x^3+x^2=\left(x^2\right)^2+2.x^2.x+x^2=\left(x^2+x\right)^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y=x^3+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x-y\right)^3-\left(x+y\right)\)
c) \(5x^2-10xy+5y^2-20z^2=\left(\sqrt{5}x-\sqrt{5}y\right)^2-20z^2\)
Trả lời bởi Mysterious Person
Phân tích thành nhân tử :
a) \(x^2+5x-6\)
b) \(5x^2+5xy-x-y\)
c) \(7x-6x^2-2\)
a) \(x^2+5x-6\)
\(=x^2-2x+3x-6\\ =\left(x^2-2x\right)+\left(3x-6\right)\\ =x\left(x-2\right)+3\left(x-2\right)\\ =\left(x-2\right)\left(x+3\right)\)
b) \(5x^2+5xy-x-y\)
\(=\left(5x^2+5xy\right)-\left(x+y\right)\\ =5x\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(5x+1\right)\)
c)\(7x-6x^2-2\)
\(=3x+4x-6x^2-2\\ =\left(3x-6x^2\right)+\left(4x-2\right)\\ =3x\left(1-2x\right)+2\left(2x-1\right)\\ =3x\left(1-2x\right)-2\left(1-2x\right)\\ =\left(1-2x\right)\left(3x-2\right)\)
Trả lời bởi Girl_Vô Danh
Bài giải:
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2
= (4 – x + y)(4 + x – y)
Trả lời bởi Tuyết Nhi Melody