Bài 8: Tính chất của dãy tỉ số bằng nhau

SK
Hướng dẫn giải Thảo luận (3)

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4.\)

Trả lời bởi Trịnh Ánh Ngọc
SK
Hướng dẫn giải Thảo luận (3)

\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{15};\dfrac{b}{5}=\dfrac{c}{4}\Rightarrow\dfrac{b}{15}=\dfrac{c}{12}.\)

Do đó : \(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-49}{7}=-7.\)

\(\Rightarrow a=-70;b=-105;c=-84.\)

Trả lời bởi Trịnh Ánh Ngọc
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (3)

Gọi a,b,c lần lượt là số tờ giấy bạc loại 2000đ,5000đ và 10000đ.(a,b,c \(\in N^{\cdot}\))

Theo đề bài,ta có \(2000a=5000b=10000c\)\(a+b+c=16\)

\(\Rightarrow\dfrac{2000a}{10000}=\dfrac{5000b}{10000}=\dfrac{10000c}{10000}\)\(a+b+c=16\)

\(\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{c}{1}\)\(a+b+c=16\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{a+b+c}{5+2+1}=\dfrac{16}{8}=2\)

Với\(\dfrac{a}{5}=2\Rightarrow a=10\)

\(\dfrac{b}{2}=2\Rightarrow b=4\)

\(\dfrac{c}{1}=2\Rightarrow c=2\)

Vậy loại 2000đ mua được 10 tờ

loại 5000đ mua được 4 tờ

loại 10000đ mua được 2 tờ

Trả lời bởi Thạch Nguyễn
SK
Hướng dẫn giải Thảo luận (2)

B là đáp án đúng.

Trả lời bởi Trịnh Ánh Ngọc
SK
Hướng dẫn giải Thảo luận (1)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k;c=d.k\)

Ta có:

\(\dfrac{a}{3.a+b}=\dfrac{b.k}{3.b.k+b}=\dfrac{b.k}{b.\left(3k+1\right)}=\dfrac{k}{3k+1}\left(1\right)\\ \dfrac{c}{3.c+d}=\dfrac{d.k}{3.d.k+d}=\dfrac{d.k}{d.\left(3k+1\right)}=\dfrac{k}{3k+1}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{a}{3.a+b}=\dfrac{c}{3c+d}\)

Trả lời bởi Trần Ngọc Bích Vân
SK
Hướng dẫn giải Thảo luận (3)

xy = 96 => x = 96/y => 2/x = y/48

=> y/48 = 3/y => y = 12 hoặc -12

=> x = 8 hoặc -8

Trả lời bởi Beautiful Angel
SK
Hướng dẫn giải Thảo luận (2)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-bcx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy \(x:y:z=a:b:c\)

Trả lời bởi Nguyễn Thị Thu
SK
Hướng dẫn giải Thảo luận (1)

a, Ta có :\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}=k\\ \Rightarrow a=bk;c=dk\)

Thay a = bk và c = dk vào VT ta được:

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)

Thay a = bk và c = dk vào VP ta được :

\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)

=> VT = VP

Vậy \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

b, Ta có : \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay a = bk và c = dk vào VT ta được:


\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\times\left(k-1\right)\right]^2}{\left[d\times\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

Thay a = bk và c = dk vào VP ta được :

\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2}{d^2}\)

=> VT = VP

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

Trả lời bởi Nguyễn Thị Thùy Dương
SK
Hướng dẫn giải Thảo luận (2)

Ta có:

\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Trả lời bởi Trần Ngọc Bích Vân