Bài 8: Tính chất của dãy tỉ số bằng nhau

SK

Biết rằng :

                \(\dfrac{bz-cy}{z}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

Hãy chứng minh :

                     \(x:y:z=a:b:c\)

NT
25 tháng 8 2017 lúc 21:59

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-bcx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy \(x:y:z=a:b:c\)

Bình luận (2)
PU
29 tháng 11 2017 lúc 22:03

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhau

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HM
Xem chi tiết
TT
Xem chi tiết
DS
Xem chi tiết
KH
Xem chi tiết
ND
Xem chi tiết
NK
Xem chi tiết
KB
Xem chi tiết
B2
Xem chi tiết