Cho đoạn thẳng AB. Vẽ cung tròn tâm A bán kính AB và cung tròn tâm B bán kính BA, chúng cắt nhau ở C và D. Chứng minh rằng :
a) \(\Delta ABC=\Delta ABD\)
b) \(\Delta ACD=\Delta BCD\)
Cho đoạn thẳng AB. Vẽ cung tròn tâm A bán kính AB và cung tròn tâm B bán kính BA, chúng cắt nhau ở C và D. Chứng minh rằng :
a) \(\Delta ABC=\Delta ABD\)
b) \(\Delta ACD=\Delta BCD\)
Vẽ tam giác ABC có AB = AC = 6cm, BC = 2cm. Sau đó đo góc A để kiểm tra rằng \(\widehat{A}\approx20^0\) ?
Cho góc xOY và tia Am (h.74a)
Vẽ cung tròn tâm O bán kính, cung này cắt Ox, Oy theo thứ tự ở B, C. Vẽ cung tròn tâm A bán kính r, cung này cắt tia Am ở D (h.74b)
Vẽ cung tròn tâm D có bán kính bằng BC, cung này cắt cung tròn tâm A bán kính r ở E (h.74c)
Chứng minh rằng \(\widehat{DAE}=\widehat{xOy}\) ?
Tam giác DAE và BOC có:
AD=OB(gt)
DE=BC(gt)
AE=OC(gt)
Nên ∆ DAE= ∆ BOC(c.c.c)
suy ra \(\widehat{DAE}\)=\(\widehat{BOC}\)(hai góc tương tứng)
vậy
\(\widehat{DAE}\)=\(\widehat{xOy}\).
Trả lời bởi Hoàng Hiếu
Cho đường thẳng xy, các điểm B và C nằm trên xy, điểm A nằm ngoài xy. Dựa vào bài 34, hãy nêu cách vẽ đường thẳng đi qua A và song song với BC ?
Nói AB, nửa mặt phẳng bờ BC có chứa điểm A.
Vẽ cung tròn tâm A bán kính bằng BC.
Vẽ cung tròn tâm C bán kính bằng AB.
Hai cung tròn cắt nhau tại D.
Kẻ đường thẳng AD ta có AD // xy.
Trả lời bởi Thảo Phương
Xét bài toán : " \(\Delta AMB\) và \(\Delta ANB\) có MA = MB, NA = NB (h.71)
Chứng minh rằng : \(\widehat{AMN}=\widehat{BMN}\)
1) Hãy ghi giả thiết và kết luận của bài toán
2) Hãy sắp xếp bốn câu sau đây một cách hợp lí để giải bài toàn trên
a) Do đó \(\Delta AMN=\Delta BMN\) (c.c.c)
b) MN : cạnh chung
MA = MB (giả thiết)
NA = NB (giả thiết)
c) Suy ra \(\widehat{AMN}=\widehat{BMN}\) (hai góc tương ứng)
a) \(\Delta AMN=\Delta BMN\) có :
Xét tg AMN và tg BMN có:
MN chung
MA = MB (gt)
NA = NB (gt)
=> tg AMN = tg BMN (c.c.c)
1) Giả thiết: \(\Delta AMN;\Delta BMN\) có: MA = MB và NA = NB.
Kết luận: tg AMN = tg BMN
2) \(\Delta AMN\) và \(\Delta BMN\) có:
MN: cạnh chung
MA = MB (giả thiết)
NA = NB (giả thiết)
Do đó \(\Delta AMN=\Delta BMN\left(c.c.c\right)\)
Suy ra \(\widehat{AMN}=\widehat{BMN}\) (2 góc t/ư).
Trả lời bởi Hoàng Thị Ngọc Anh
Vẽ tam giác ABC biết độ dài mỗi cạnh bằng 2,5 cm. Sau đó mỗi góc của tam giác ?
Mỗi góc của tam giác ABC bằng \(60^0\)
Trả lời bởi Nguyen Thuy HoaVẽ tam giác MNP biết MN = 2,5cm, NP = 3cm, PM = 4cm ?
-Vẽ đoạn MN= 2,5cm
- Trên cùng một nửa mặt phẳng bở MN vẽ cung trong tâm M bán kính 5cm và cung tròn tâm N bán kinh 5cm.
- Hai cung tròn cắt nhau tại P. Vẽ các đoạn MN, NP, ta được tam giác MNP.
Trên mỗi hình 68, 69, 70 có các tam giác nào bằng nhau ? Vì sao ?
Hình 68.
Xét \(\Delta ABC;\Delta ABD\):
AC = AD (gt)
AB chung
BC = BD (gt)
=> \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)
Hình 69.
Xét \(\Delta MNQ;\Delta QPM:\)
MN = QP (gt)
MQ chung
NQ = PM (gt)
=> \(\Delta MNQ=\Delta QPM\left(c.c.c\right)\)
Hình 70. Gọi giao điểm của HK và EI là O.
Xét tg HEI; tg KIE:
EH = KI
EI chung
HI = KE
=> tg HEI = tg KIE (c.c.c)
=> g HEI = g KIE hay g HEO = g OIK
Tương tự: tg HIK = tg KEH (c.c.c)
=> g IHK = g EKH hay g IHO = g OKE
Xét tg HEO; tg KIO:
g HEO = g OIK (c/m trên)
HE = KI
g EHO = g OKI (cộng góc)
=> tg HEO = tg KIO (g.c.g)
Tương tự: tg HIO = tg KEO (g.c.g)
Trả lời bởi Hoàng Thị Ngọc Anh
Cho tam giác ABC. Dùng thước và compa, vẽ các tia phân giác của các góc A, B, C ?
Vẽ tia phân giác của góc A.
Vẽ cung trong tâm A, cung tròn này cắt AB, AC theo thứ tự ở M,N.
Vẽ các cung tròn tâm M và tâm N có cùng bán kính sao cho chúng cắt nhau ở điểm I nằm trong góc BAC.
Nối AI, ta được AI là tia phân giác của góc A.
Tương tự cho cách vẽ tia phân giác của các góc B,C( tự vẽ)
Tam giác ABC có AB = AC, M là trung điểm của BC. Chứng minh rằng AM vuông góc với BC ?
bạn chỉ cần chứng minh là tam giác ABM= tam giác ACM
rồi suy ra góc AMB= góc AMC mà 2 góc này kề bù rồi dễ dàng chứng minh được AM vuông góc với BC
Trả lời bởi Thành Trần Minh