Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C, D, E sao cho AC = CD = DE (h.97). Kẻ đoạn thẳng EB. Qua C, D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra thành 3 phần bằng nhau ?
Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C, D, E sao cho AC = CD = DE (h.97). Kẻ đoạn thẳng EB. Qua C, D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra thành 3 phần bằng nhau ?
Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d bằng 2cm. Lấy điểm B bất kì thuộc đường thẳng d. Gọi C là điểm đối xứng với điểm A qua điểm B. Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ?
Bài giải:
Kẻ AH và CK vuông góc với d.
Ta có AB = CB (gt)
ˆABHABH^ = ˆCBKCBK^ ( đối đỉnh)
nên ∆AHB = ∆CKB (cạnh huyền - góc nhọn)
Suy ra CK = AH = 2cm
Điểm C cách đường thẳng d cố định một khoảng cách không đổi 2cm nên C di chuyển trên đường thẳng m song song với d và cách d một khoảng bằng 2cm.
Trả lời bởi Thien Tu BorumGhép mỗi ý (1), (2), (3) với một trong các ý (5), (6), (7), (8) để được một khẳng định đúng :
Cho góc vuông xOy, điểm A thuộc tia Oy sao cho OA = 2cm. Lấy B là một điểm bất kì thuộc tia Ox. Gọi C là trung điểm của AB. Khi điểm B di chuyển trên tia Ox thì điểm C di chuyển trên đường nào ?
Cách 1:
Kẻ CH ⊥ Ox
Ta có CB = CA (gt)
CH // AO (cùng vuông góc Ox)
Suy ra CH = 1212AO = 1212.2 = 1 (cm)
Điểm c cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia Em song song với Ox và cách Ox một khoảng bằng 1cm.
Cách 2:
Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB
do đó CO = CA
Điểm C di chuyển trên tia Em thuộc đường trung trực của OA
Trả lời bởi Thien Tu BorumCho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) Chứng minh rằng ba điểm A, O, M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Bài giải:
a) Tứ giác ADME có ˆA=ˆD=ˆE=900A^=D^=E^=900
nên ADME là hình chữ nhật
O là trung điểm của đường chéo AM.
Vậy A, O, M thẳng hàng
b)Kẻ AH ⊥ BC. Tương tự như bài 77 ta có hai cách chứng minh như sau:
Cách 1:
Kẻ OK ⊥ BC. Ta có OA = OM, OK // AH (cùng vuông góc BC).
Suy ra OK=12AHOK=12AH
Điểm O cách đoạn BC cố định một khoảng không đổi bằng 12AH12AH. Mặt khác khi M trùng C thì O chính là trung điểm của AC, khi M trùng B thì O chính là trung điểm của AB. Vậy O di chuyển trên đoạn thẳng PQ là đường trung bình của tam giác ABC.
Cách 2: Vì O là trung điểm của AM nên HO là trung tuyến ứng với cạnh huyền AM. Do đó OA = OH. Suy ra điểm O di chuyển trên đường trung trực của AH.
Mặt khác vì M di chuyển trên đoạn PQ. Vậy điểm O di chuyển trên đoạn thẳng PQ là đường trung bình của ABC.
Trả lời bởi Thien Tu BorumĐố :
Để vạch một đường thẳng song song với mép gỗ AB và cách mép gỗ 10 cm, bác thợ mộc đặt đoạn bút chì CD dài 10 cm vuông góc với ngón tay trỏ lấy làm cữ (h.98), rồi đưa ngón trỏ chạy dọc theo mép gỗ AB. Căn cứ vào kiến thức nào mà ta kết luận được rằng đầu chì C vạch nên đường thẳng song song với AB và cách AB là 10 cm ?
Bài giải:
Căn cứ vào tính chất đưởng thẳng song song với một đường thẳng cho trước ta kết luận là vì điểm C cách mép gỗ AB một khoảng bằng 10cm nên đầu chì C vạch nên đường thằng song song với AB và cách AB một khoảng 10cm.
Trả lời bởi Thien Tu Borum
Cho đoạn thẳng AB. Kẻ tia Ax bất kì, lấy các điểm C, D, E sao cho AC = CD = DE. Qua C và D kẻ các đường thẳng song song với EB. Chứng minh rằn đoạn thẳng AB bị chia thành 3 phần bằng nhau.
Ta có AC = CD và CC’ // BE
CD = DE và DD’ // BE
=> CC’ // DD’ và CEBC’ là hình thang
=> CC’ là đường trung bình của tam giác ADD’
DD’ là đường trung bình của hình thang CEBC’
=> AC’ = CD’ và C’D’ = D’B => AC’ = CD’ = D’B
Trả lời bởi T.Thùy NinhCho góc vuông xOy, điểm A trên tia Oy. Điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào ?
Vì điểm C đối xứng với điểm A qua điểm B ⇒ BA = BC
Kẻ CH ⊥ Ox
Xét ∆ AOB và ∆ CHB ta có :
\(\widehat{AOB}=\widehat{CHB}=90^o\)
\(BA=BC\left(cmt\right)\)
\(\widehat{ABO}=\widehat{CBH}\) ( đối đỉnh )
\(\Rightarrow\)∆ AOB = ∆ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO ( 2 cạnh tương ứng )
A, O cố định ⇒ OA không đổi nên CH không đổi.
C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng OA.
Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.
Vậy C chuyển động trên tia Km // Ox, cách Ox một khoảng không đổi bằng OA.
Trả lời bởi Trần Minh Phong
Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ?
Gọi E và F lần lượt là trung điểm của AB và AC.
Ta sẽ chứng minh ba điểm E, I, F thẳng hàng.
Do E, I lần lượt là trung điểm của AB và AM nên EI là đường trung bình của tam giác ABM. Suy ra:
EI \\ BM suy ra EI // BC. (1)
Do I, F lần lượt là trung điểm của AC và AM nên IF là đường trung bình của tam giác AMC.
Suy ra: IF // MC suy ra FI // BC. (2)
Từ (1) và (2) ta có EI và FI cùng song song với BC nên ba điểm E, F, I thẳng hàng.
Do E, F cố định nên khi M khi di chuyển trên BC thì I di chuyển trên EF.
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC
a) So sánh các độ dài AM, DE
b) Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất
a)Xét tứ giác ADME có góc MDA=90(gt)
góc DAE=90(gt)
góc AEM=90(gt)
=>tứ giác ADME là hình chữ nhật
=>AM=DE
b)Kẻ AH vuông góc với BC
Ta có DE=AM>=AH
Dấu "=" xãy ra khi M trùng H
Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường cao kẻ từ A đến BC
Trả lời bởi Ma Kết
Bài giải:
Ta có: EB // DD' // CC' và AE = CD = DE.
Nên theo định lí về các đường thẳng song song cách đều ta suy ra
AC' = C'D' = D'B
Vậy đoạn thẳng AB bị chia ra ba phần bằng nhau.