tìm n để phân số 2n+3/7 ; n+3/2n-3 là phân số tối giản
giúp mk vs mk cần gấp lắm
\(\dfrac{ }{ }\)Tìm n để các phân số sau là phân số tối giản:
a) 7n+1/14n+3
b) 2n+7/3n+10
c)2n+3/4n+4
Tìm n để các phân số sau có giá trị nguyên
(n+8)/7; (2n+3)/7
riêng từng phân số hay cả 2 phân số đều là số nguyên vậy bạn!
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
21. Tìm các số tự nhiên n để các phân số sau là phân số tối giản:
a)\(\dfrac{2n+3}{4n+1}\)
b)\(\dfrac{3n+2}{7n+1}\)
c) \(\dfrac{2n+7}{5n+2}\)
Tìm các số nguyên n để phân số \(\frac{2n+3}{3n+7}\)là phân số tối giản
Gọi ƯCLN\(\left(2n+3;3n+7\right)=d\)
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\Rightarrow3.\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\\3n+7⋮d\Rightarrow2.\left(3n+7\right)⋮d\Rightarrow6n+14⋮d̸\end{cases}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\Rightarrow d\in1;5\)
\(+d=5\Rightarrow6n+9⋮5\Rightarrow5n+\left(n+9\right)⋮5\)
\(\Rightarrow n+9⋮5\Rightarrow n+4⋮5\Rightarrow n=5k-4\)
Vậy n=5k-4 thì rút gọn đc
Vậy \(n\ne5k-4\Rightarrowđpcm\)
Tìm n để phân số sau có giá trị nguyên
1, (n+8)/7
2, (2n+3)/7
\(\frac{n+8}{7}\)có giá trị nguyên
th1 \(\frac{n+8}{7}\) là nguyên dương
\(\Leftrightarrow\orbr{\begin{cases}n+8>0\\7>0\end{cases}\Leftrightarrow\orbr{\begin{cases}n>-8\\7>0\end{cases}\Leftrightarrow}-8< n< 0< 7}\)
\(\Leftrightarrow\orbr{\begin{cases}n+8< 0\\7< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}n< -8\\7< 0\end{cases}\Leftrightarrow}-8>n>0>7\left(l\right)}\)
th2\(\frac{n+8}{7}\)là nguyên âm
\(\Leftrightarrow\orbr{\begin{cases}n+8>0\\7< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}n>-8\\7< 0\end{cases}\Leftrightarrow}-8< n< 7< 0\left(l\right)}\)
\(\Leftrightarrow\orbr{\begin{cases}n+8< 0\\7>0\end{cases}\Leftrightarrow\orbr{\begin{cases}n< -8\\7>0\end{cases}\Leftrightarrow}-8>n>7>0\left(l\right)}\)
th3 \(\frac{n+8}{7}=0\)
\(\Leftrightarrow\orbr{\begin{cases}n+8=0\\7=0\left(l\right)\end{cases}}\Leftrightarrow n=-8\)
cộng các th ta có
\(-8\le n< 0< 7\)
vậy với\(-8\le n< 0< 7\)thì phân số có giá trị nguyên
Tìm các số n để phân số \(\frac{2n+3}{3n+7}\) là phân số tối giản
Tìm n thuộc Z để phân số sau nhận giá trị nguyên:
a=n-4 phần n+3 (đây là phân số)
b=3n-7 phần 2n+3 (đây là phân số)
a) \(A=\frac{n-4}{n+3}\left(n\in Z\right)\)
\(A=\frac{\left(n+3\right)-7}{n+3}\)
\(\Rightarrow\left(n+3\right)\inƯ_{\left(7\right)}=\left\{-7;-1;1;7\right\}\)
Lập bảng tìm n:
n+3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
Thỏa mãn | TM | TM | TM | TM |
Vậy \(n\in\left\{-10;-4;-2;4\right\}\)để \(A\in Z\)
b) \(B=\frac{3n-7}{2n+3}\left(n\in Z\right)\)
\(B=\frac{\left(3n+3\right)-10}{2n+3}\)
\(\Rightarrow2n+3\inƯ_{10}=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
Lập bảng tìm n:
2n+3 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
n | -6,5 | -4 | -2,5 | -2 | -1 | -0,5 | 4 | 6,5 |
Thỏa mãn | loại | TM | loại | TM | TM | loại | TM | loại |
Vậy \(n\in\left\{-4;-2;-1;4\right\}\)để \(A\in Z\)