Những câu hỏi liên quan
H24
Xem chi tiết
NA
23 tháng 1 2024 lúc 16:03

đúng

 

 

Bình luận (0)
NA
23 tháng 1 2024 lúc 16:03

tui đang trên mạng olm đó

 

 

Bình luận (0)
H24
23 tháng 1 2024 lúc 16:03

giúp mình với ạ

Bình luận (0)
ND
Xem chi tiết
HH
25 tháng 5 2018 lúc 22:15

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

Bình luận (0)
NA
14 tháng 1 2022 lúc 16:00
Cho sao nha nhưng tui ko bít làm
Bình luận (1)
 Khách vãng lai đã xóa
MT
Xem chi tiết
H24
17 tháng 8 2020 lúc 6:59

SOS hoặc SS đều ra.

Bình luận (0)
 Khách vãng lai đã xóa
MT
27 tháng 11 2020 lúc 22:39

nghĩa là gì ?

Bình luận (0)
 Khách vãng lai đã xóa
NA
14 tháng 1 2022 lúc 12:52
Mình chịu mình lớp 5 nha
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
11 tháng 1 2024 lúc 17:27

Em kiểm tra lại đề ở tỉ số đầu tiên

\(\dfrac{2a+2b-2c}{c}=\dfrac{2b-2c+2a}{a}\)

Hay là: \(\dfrac{2a+2b-2c}{c}=\dfrac{2b+2c-2a}{a}\)

Bình luận (0)
H24
Xem chi tiết
KB
17 tháng 9 2018 lúc 23:38

Hình như sai đề :

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)

\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)

\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )

Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)

\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)

\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )

CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )

Thay ( * ) và ( * ') vào E , ta được :

\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)

\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)

\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)

\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)

\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)

\(=\dfrac{0}{2}=0\)

Vậy \(E=0\)

Bình luận (0)
H24
Xem chi tiết
HQ
Xem chi tiết
AH
26 tháng 7 2018 lúc 15:28

Lời giải:

Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)

Cộng theo vế:

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

Bình luận (3)
DH
Xem chi tiết
DH
Xem chi tiết