Những câu hỏi liên quan
NT
Xem chi tiết
NT
9 tháng 4 2019 lúc 21:36

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

Bình luận (0)
NT
9 tháng 4 2019 lúc 21:38

cảm ơn Nguyễn Công Tỉnh

Bình luận (0)
HD
8 tháng 3 2020 lúc 18:11

Tìm tất cả các số nguyên tố p và q sao cho các số 7p+q và pq+11 cũng là các số nguyên tố

Giải gấp giúp mình nhé

Bình luận (0)
 Khách vãng lai đã xóa
YJ
Xem chi tiết
H24
26 tháng 2 2020 lúc 21:03

Tham khảo tại đây nhé bạn Yumani Jeng

https://olm.vn/hoi-dap/detail/99483398563.html

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NQ
10 tháng 2 2018 lúc 19:46

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

Tk mk nha

Bình luận (0)
ND
13 tháng 2 2019 lúc 22:06

-Xét n có dạng 5k thì tích có n chia hết cho 5 nên chia hết cho 5

-Xét n có dạng 5k+1 thì 4n +1=4x(5k+1)+1=20k+4+1=20k+5 chia hết cho 5.Vậy tích cũng chia hết cho 5

-Xét n có dạng 5k+2 thì 2n+1=2x(5k+2)+1=10k +4+1=10k+5 chia hết cho 5.Vậy tích chia hết cho 5

-Xét n có dạng 5k+3 thì 3n+1=3x(5k+3)+1=15k+9+1=15k+10 chia hết cho 5.Vậy tích chia hết cho 5

-Xét n có dạng 5k+4 thì n+1=5k+4+1=5k+5 chia hết cho 5.Vậy tích chia hết cho 5

Từ các trường hợp trên,suy ra tích nx(n+1)x(2n+1)x(3n+1)x(4n+1)chia hết cho 5 với mọi số tự nhiên n

Bình luận (0)
NU
21 tháng 12 2022 lúc 19:30

Ta có:

Nếu n:5 (dư 1) thì ⇒4n+1 chia hết cho 5

Nếu n:5 (dư 2) thì ⇒3n+1 chia hết cho 5

Nếu n:5 (dư 3) thì ⇒2n+1 chia hết cho 5

Nếu n:5 (dư 4) thì ⇒  n+1 chia hết cho 5

⇒Với mọi số tự nhiên thì A luôn chia hết cho 5

Vậy A luôn chia hết cho 5

Bình luận (0)
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
PD
Xem chi tiết
PD
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Bình luận (0)
VK
Xem chi tiết
NT
Xem chi tiết
TC
7 tháng 8 2021 lúc 20:33

undefined

Bình luận (0)
NT
7 tháng 8 2021 lúc 23:05

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

Bình luận (0)
TM
Xem chi tiết
HT
26 tháng 3 2022 lúc 17:57

Ta có : \(n= [5k + 1;5k+2;5k+3;5k+4;5k]\) n có thể là các giá trị trên \((K \in N)\)

(+) Nếu n = 5k => biểu thức trên chia hết cho 5

(+) Nếu n = 5k + 1 thì 4n+1 chia hết cho 5. Vì: 4n+1 = 4.(5k + 1) + 1 = 20k + 4 + 1 = 20k + 5

=> Mà 20k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5

(+) Nếu n= 5k + 2 thì 2n+1 chia hết cho 5. Vì  2n + 1 = 2.(5k + 2) + 1 = 10k + 4 + 1

=> Mà 10k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5

(+) Nếu n = 5k + 3 thì 3n+1 chia hết cho 5. Vì 3n + 1 = 3(5k + 3) + 1 = 15k + 9 + 1

=> Mà 15k + 10 chia hết cho 5 => Biểu thức trên chia hết cho 5

(+) Nếu n = 5k+4 thì n+1 chia hết cho 5. Vì n+1 =  5k + 4 + 1 

=> Mà 5k + 5 chia hết cho 5 => Biểu thức trên chia hết cho 5

Từ các giả thiết trên

=>   n(n+1)(2n+1)(3n+1)(4n+1) chia hết cho 5 với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết