Những câu hỏi liên quan
PT
Xem chi tiết
NN
11 tháng 1 2018 lúc 21:33

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+a+b-b}{c+c+d-d}=\dfrac{2a}{2c}=\dfrac{a}{c}_{\left(1\right)}.\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{a-a+b+b}{c-c+d+d}=\dfrac{2b}{2d}=\dfrac{b}{d}_{\left(2\right)}.\)

Từ \(_{\left(1\right)+\left(2\right)}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\) (t/c tỉ lệ thức).

\(\Rightarrowđpcm.\)

Bình luận (0)
NL
11 tháng 1 2018 lúc 21:33

a=b*k

c=d*k

thì b*k+b/b*k-b=b*(k+1)/b*(k-1)=k+1/k-1

thì d*k+d/d*k-d=d*(k+1)/d*(k-1)=k+1/k-1

nen suy ra a+b/a-b=c+d/c-d

Bình luận (0)
KT
Xem chi tiết
HC
Xem chi tiết
DH
22 tháng 1 2017 lúc 10:02

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (1) => a = bk ; c = dk . Thay vào \(\frac{a+c}{b+d}\) ta được :

\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\) (2)

Từ (1) ; (2) => \(\frac{a}{b}=\frac{a+c}{b+d}\) ( đpcm )

Bình luận (5)
HA
22 tháng 1 2017 lúc 10:02

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)

\(\Rightarrow\) đpcm.

Bình luận (11)
HC
Xem chi tiết
MG
9 tháng 9 2021 lúc 19:43

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(b+d≠0\right)\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Đặt ab=cd=k (1) => a = bk ; c = dk . Thay vào a+cb+d ta được :

bk+dkb+d=k(b+d)b+d=k (2)

Từ (1) ; (2) => ab=a+cb+d ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
NL
17 tháng 1 2016 lúc 9:35

a+b/a-b=c+d/c-d suy ra a+b/c+d=a-b/c-d.mà a+b/c+d=a/c=b/d hay a/b=c/d. vậy a/b=c/d( đ.f.c.m)

 

 

Bình luận (0)
TT
Xem chi tiết
NH
Xem chi tiết
H24
24 tháng 6 2017 lúc 16:52

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)
DH
24 tháng 6 2017 lúc 17:34

Ta có:

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{a+b-a+b}{c+d-c+d}\\ =\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\rightarrow\) đpcm

Chúc bạn học tốt!!!

Bình luận (1)
MS
24 tháng 6 2017 lúc 19:32

Nếu:

\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

\(\Leftrightarrow a\left(c-d\right)+b\left(c-d\right)=c\left(a-b\right)+d\left(a-b\right)\)

\(\Leftrightarrow ac-ad+bc-bd=ac-bc+ad-bd\)

\(-ad+bc-bd=-bc+bc-bd\)

\(-ad=-bc\)

\(ad=bc\)

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

\(ad=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

Bình luận (0)
NN
Xem chi tiết
YN
15 tháng 3 2022 lúc 21:17

`Answer:`

a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)

\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)

\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)

Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết