Những câu hỏi liên quan
TN
Xem chi tiết
DL
Xem chi tiết
LC
19 tháng 6 2019 lúc 10:34

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}\)

\(=\frac{-5}{7}\)

Bình luận (0)
H24
19 tháng 6 2019 lúc 10:41

#)Giải :

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\frac{\left(\frac{-5}{7}\right)^n\times\left(\frac{-5}{7}\right)}{\left(\frac{-5}{7}\right)^n}=\frac{-5}{7}\)

Bình luận (0)
H24
19 tháng 6 2019 lúc 10:42

\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}=\left(\frac{-5}{7}\right)^{n+1-n}=\left(\frac{-5}{7}\right)^1=\frac{-5}{7}\)

Bình luận (0)
TH
Xem chi tiết
HP
13 tháng 12 2015 lúc 8:19

\(\frac{\left(-\frac{5}{7}\right)^{n+1}}{\left(-\frac{5}{7}\right)^n}=\frac{\left(-\frac{5}{7}\right)^n.\left(-\frac{5}{7}\right)}{\left(-\frac{5}{7}\right)^n}=\frac{-\frac{5}{7}}{1}=-\frac{5}{7}\)

Bình luận (0)
NN
10 tháng 12 2015 lúc 21:15

\(\frac{-5}{7}\)

Bình luận (0)
TH
13 tháng 12 2015 lúc 8:13

chỉ rõ cách làm

 

Bình luận (0)
NN
Xem chi tiết
NT
4 tháng 2 2022 lúc 13:47

a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)

b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)

Bình luận (0)
QL
Xem chi tiết
PH
Xem chi tiết
LT
7 tháng 5 2017 lúc 10:18

\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng

\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

Bình luận (0)
ND
Xem chi tiết
NN
27 tháng 3 2017 lúc 18:40

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

Bình luận (0)
VP
28 tháng 3 2017 lúc 14:56

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

Bình luận (0)
DT
Xem chi tiết
NH
Xem chi tiết
OO
14 tháng 8 2017 lúc 21:07

kinh!

Bình luận (0)
NH
14 tháng 8 2017 lúc 21:09

oOo Hello the world oOo, làm được không?

Bình luận (0)