cho a,b,c là 3 số dương thỏa mãn: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2.\)
tính Max Q=abc
cho a;b;c là các số thực dương thỏa mãn abc=8.Tìm Max P=\(\frac{1}{2a+b+6}+\frac{1}{2b+c+6}+\frac{1}{2c+a+6}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{1}{\left(a+2\right)+\left(a+2\right)+\left(b+2\right)}+\frac{1}{\left(b+2\right)+\left(b+2\right)+\left(c+2\right)}+\frac{1}{\left(c+2\right)+\left(c+2\right)+\left(a+2\right)}\)
\(\le\frac{1}{9}\left(\frac{2}{a+2}+\frac{1}{b+2}\right)+\frac{1}{9}\left(\frac{2}{b+2}+\frac{1}{c+2}\right)+\frac{1}{9}\left(\frac{2}{c+2}+\frac{1}{a+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)\)
Dễ dàng cm BĐT \(\frac{1}{x+1}+\frac{1}{y+1}\ge\frac{2}{1+\sqrt{xy}}\)
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{1}{2}\left(\frac{1}{1+\frac{a}{2}}+\frac{1}{1+\frac{b}{2}}+\frac{1}{1+\frac{c}{2}}\right)\)
\(\le\frac{1}{2}.\frac{3}{1+\sqrt[3]{\frac{abc}{8}}}=\frac{3}{4}\Rightarrow P\le\frac{1}{4}\)
Xảy ra khi \(a=b=c=2\)
À viết ngược dấu BĐT phụ r` :v
\(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) mới đúng nhé :v
\(\Leftrightarrow\frac{\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x+1\right)\left(y+1\right)\left(1+\sqrt{xy}\right)}\le0\)
Cho a,b,c là ba số dương thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
Tìm Max Q=a.b.c
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)
Tương tự, ta có:
\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)
Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)
P/s: Ko chắc
cho a;b;c thực dương thỏa mãn abc+a+c=b
Tìm Max
P=\(\frac{2}{a^2+1}-\frac{2}{b^2+1}+\frac{3}{c^2+1}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là 3 số dương thỏa mãn điều kiện \(\frac{1}{a+b+1}\)+\(\frac{1}{b+c+1}\)+\(\frac{1}{a+c+1}\)=2
tìm max của tích (a+b)(b+c)(a+c)
1. Cho a,b,c thực dương thỏa mãn: abc=1
Tìm GTLN:
A= \(\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
2. Cho a,b,c thực dương thỏa mãn: abc= a+b+c+2
Tìm max:
P= \(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{a^2+c^2}}\)
\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)
\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)
Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)
oke rồi he
@Nub :v
Áp dụng Bunhiacopski ta dễ có:
\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự:
\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)
Cộng lại:
\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)
Ta đi chứng minh:
\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Cái này luôn đúng theo Cauchy
Đẳng thức xảy ra tại a=b=c=1
1)Cho a,b,c là các số thực thỏa mãn: a+b+c=2015 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\).Tính \(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}\)
2)Cho n là số dương.Chứng minh:
T= \(2^{3n+1}-2^{3n-1}+1\) là hợp số.
3)Cho a,b,c là ba số dương và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm Max A=\(\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
Cho a,b,c là các số dương thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}\)
CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{abc}\)
Cho a,b,c là 3 số dương thỏa mãn: \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\)Tính giá trị của biểu thức M =\(\frac{\sqrt{a}-\sqrt{b}}{c+\sqrt{abc}}+\frac{\sqrt{b}-\sqrt{c}}{a+\sqrt{abc}}+\frac{\sqrt{c}-\sqrt{a}}{b+\sqrt{abc}}\)