A=1/8+1/24+1/48+1/80+...+1/440
A=2^2019 -1 -2-2^2-2^3-....-2^2018
C=8+24+48+80+...+440
E=1-2^2+2^4-2^6+...+2^12-2^14+2^16
0+1+4+9+16+...+1000
Tính nhanh :
A= 1+1/8+1/24+1/48+1/80+1/120
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(=1+\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+\dfrac{1}{8\times10}+\dfrac{1}{10\times12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{17}{12}\)
tính A = 1 + 1/8 +1/24 + 1/48 + 1/80 + 1/120
A = 1 + 1/2.4 + 1/4.6 + 1/6.8 + 1/8.10 + 1/10.12
2A = 2 + 2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12
= 2 + 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + 1/8 - 1/10 + 1/10 - 1/12
= 2 + 1/2 - 1/12 = 29/12
=> A = 29/12 : 2 = 29/24
Tk mk nha
A =1+ 1/2.4 + 1/4.6 +1/6.8+1/8.10+1/10.12
=1+1/2 -1/4 +1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12
=1+1/2-1/12
=3/2-1/12
=17/12
A=1/3+1/8+1/15+1/24+1/35+1/48+1/63+1/80
\(A=\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\frac{1}{24}+\frac{1}{35}+\frac{1}{48}+\frac{1}{63}+\frac{1}{80}\)
\(=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(=\frac{1}{2}\times\left[\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\right)+\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+\frac{2}{8\times10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}\right)+\left(\frac{4-2}{2\times4}+\frac{6-4}{4\times6}+\frac{8-6}{6\times8}+\frac{10-8}{8\times10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\right]\)
\(=\frac{1}{2}\times\left[\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)
\(=\frac{29}{45}\)
Tính tổng
A=1/8+1/24+1/48+1/80+...+1/360
\(A=\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+...+\dfrac{1}{360}\)
\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}+...+\dfrac{1}{18\cdot20}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{18\cdot20}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{18}-\dfrac{1}{20}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{2}\cdot\dfrac{9}{20}=\dfrac{9}{40}\)
tính nhanh tổng sau : a= 1/3 + 1/8 +1/15 + 1/24 + 1/35 + 1/48 + 1/63 + 1/80
2a= 2/3+2/8+2/15+2/24+2/35+2/48+2/63+2/80= [2/( 1*3)+2/( 3*5)+2/( 5*7)+2/( 7*9)]+[2/(2*4)+2/(4*6)+2/(6*8)+2/(8*10)]= [1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9]+[1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10]= [1/1-1/9]+[1/2-1/10]= 8/9+2/5= 58/45 =>a= 29/45
2 + 1\8 + 1\24 + 1\48 + 1\80 =?
D=1/8+1/24+1/48+1/80+....=1/1520
\(D=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+........+\frac{1}{1520}\)
\(D=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+........+\frac{1}{38.40}\)
\(2D=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+......+\frac{2}{38.40}\)
\(2D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-.......-\frac{1}{40}\)
\(2D=1-\frac{1}{40}\)
\(2D=\frac{40}{40}-\frac{1}{40}\)
\(2D=\frac{39}{40}\)
\(D=\frac{39}{40}:2=\frac{39}{40}.\frac{1}{2}=\frac{39}{80}\)
Vậy ....
\(D=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{1520}\)
\(D=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{38.40}\)
\(D=\frac{1}{2}\times\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{38.40}\right)\)
\(D=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{38}-\frac{1}{40}\right)\)
\(D=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{40}\right)\)
\(D=\frac{1}{2}\times\frac{19}{40}\)
\(D=\frac{19}{80}\)
_Chúc bạn học tốt_
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
`1/8+1/24+1/48+1/80+1/120`
`=1/[2xx4]+1/[4xx6]+1/[6xx8]+1/[8xx10]+1/[10xx12]`
`=1/2xx(2/[2xx4]+2/[4xx6]+2/[6xx8]+2/[8xx10]+2/[10xx12])`
`=1/2xx(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)`
`=1/2xx(1/2-1/12)`
`=1/2xx(6/12-1/12)`
`=1/2xx5/12=5/24`
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
=\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{10.12}\)
=\(\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{10.12}\right)\)
=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
=\(\dfrac{1}{2}.\dfrac{5}{12}\)
=\(\dfrac{5}{24}\)
Dấu chấm(.)là nhân.
\(\dfrac{1}{8}\) + \(\dfrac{1}{24}\)+ \(\dfrac{1}{48}\)+ \(\dfrac{1}{80}\)+ \(\dfrac{1}{120}\)
= \(\dfrac{1}{2}\) X (\(\dfrac{2}{2\times4}\)+ \(\dfrac{2}{4\times6}\)+\(\dfrac{2}{6\times8}\)+\(\dfrac{2}{8\times10}\)+ \(\dfrac{2}{10\times12}\))
= \(\dfrac{1}{2}\) x ( \(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{12}\))
= \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}\)-\(\dfrac{1}{12}\))
= \(\dfrac{1}{2}\) X \(\dfrac{6-1}{12}\)
= \(\dfrac{1}{2}\)x \(\dfrac{5}{12}\)
= \(\dfrac{5}{24}\)