\(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+...+\frac{1}{440}\)
\(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}+....+\frac{1}{20\cdot22}\)
\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+.....+\frac{2}{20\cdot22}\)
\(2A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{20}-\frac{1}{22}\)
\(2A=1-\frac{1}{22}\)
\(A=\frac{21}{22}:2\)
\(A=\frac{21}{44}\)
\(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+...+\frac{1}{440}\)
= \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{20.22}\)
= \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{20}-\frac{1}{22}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{22}\right)=\frac{1}{2}.\frac{5}{11}=\frac{5}{22}\)
\(S=\frac{1}{8}+\frac{1}{24}+\frac{1}{80}+...+\frac{1}{440}\)
=> \(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+...+\frac{1}{20.22}\)
=> \(S=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{20.22}\right)\)
=> \(S=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{11}\right)=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Mk làm lại nhé sorry bn lúc nãy mk nhầm