Những câu hỏi liên quan
PK
Xem chi tiết
NT
2 tháng 3 2017 lúc 11:30

Từ dãy trên ta có:

(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\))                  < vì không có cách nhập hỗn số nên mình đổi ra phân số >

= 2 + 3 + 4 + 5 + 6 + ..........................+ 51

Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số 

Chia ra : 50 : 2 = 25 cặp 

ta có( 51 + 2 ) x 25 =1325

Vậy tổng trên có kết quả bằng 1325       (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )

Bình luận (0)
PH
Xem chi tiết
PA
12 tháng 2 2016 lúc 9:27

kq cuối nk =1326 (vừa nhìn nhầm )

Bình luận (0)
PA
12 tháng 2 2016 lúc 9:24

=2550 nha (hình như thế) 

Bình luận (0)
PA
12 tháng 2 2016 lúc 9:25

nhầm =2601

Bình luận (0)
NP
Xem chi tiết
H24
18 tháng 2 2019 lúc 19:55

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{50}}\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

Bình luận (0)
BK
Xem chi tiết
H24
19 tháng 3 2020 lúc 11:46

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

hok tốt!!

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
KL
Xem chi tiết
TM
7 tháng 6 2017 lúc 21:49

bài đó là toán lớp 2 hả nhóc??

Bình luận (0)
TP
7 tháng 6 2017 lúc 22:05

Bạn ơi,sao mik thấy không giống toán lớp 2

Kết bạn với mik nhé!Yêu bạn!

Bình luận (0)
KL
8 tháng 6 2017 lúc 9:29

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\left(-1-\frac{1}{3^{51}}\right)\): \(4\)

\(B=\frac{-1}{4}\)

Bình luận (0)
NN
Xem chi tiết
UA
Xem chi tiết
TV
20 tháng 3 2018 lúc 21:45

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+......+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=-1+\frac{1}{3}-\frac{1}{3^2}+......+\frac{1}{3^{49}}-\frac{1}{3^{50}}+\left(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.......+\frac{1}{3^{50}}+\frac{1}{3^{51}}\right)\)

\(4B=-1+\frac{1}{3}-\frac{1}{3^2}+.....+\frac{1}{3^{49}}-\frac{1}{3^{50}}-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+.......+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(4B=-1-\frac{1}{3^{51}}\)

Bình luận (0)
UA
22 tháng 3 2018 lúc 21:03

cậu chưa tính hết nha vs lại bài này tớ làm đc ùi

Bình luận (0)
LH
Xem chi tiết
NP
10 tháng 5 2017 lúc 16:13

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}+\frac{1}{3^{50}}\right)\)

                      \(+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\left(-1-\frac{1}{3^{51}}\right):4\)

\(B=\frac{-1}{4}\)

Bình luận (0)
AK
10 tháng 5 2017 lúc 16:06

Mình cho bạn 1 công thức rồi tự làm 1 mình nhé:

Bình luận (0)
TS
17 tháng 5 2017 lúc 15:48

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}...+\frac{1}{3^{49}}+\frac{1}{3^{50}}\)

\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{49}}+\frac{1}{3^{50}}\right)\)

\(+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\left(-1-\frac{1}{3^{51}}\right):4\)

\(B=\frac{-1}{4}\)

Bình luận (0)