xác các hằng số a và b sao cho đa thức \(x^4+ax+b\) chia hết cho \(x^2-4\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xác định các hằng số a và b sao cho
a) x^4 + ax + b chia hết cho x^2 - 4
b) x^4 + ax^ + bx - 1 chia hết cho x^2 - 1
c) x^3 + ax + b chia hết cho x^2 + 2x - 2
(Chia đa thức cho đa thức)
Chỉ ý kiến của mk thôi
chưa chắc đúng
Tham khảo nhé
Xác định các hằng số a và b sao cho đa thức x4 + ax + b chia hết cho x2 - 4.
Xác định các hằng số a và b sao cho: x^4+4 chia hết cho x^2+ax+b
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Xác định các hệ số a và b sao cho đa thức x4 + ax + bx + b chia hết cho đa thức x2 - 1
Xác định các hằng số a và b sao cho:
a) x^4+ax+b chia hết cho x^2-4
a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(f\left(x\right)=x^4+ax+b\)
Theo định lí bơ zu
\(\Rightarrow f\left(2\right)=16+2b+b=0\)
\(\Leftrightarrow2a+b=-16\) ( 1 )
\(\Rightarrow f\left(-2\right)=16-2a+b=0\)
\(\Leftrightarrow-2a+b=-16\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)
Xác định các hằng số a và b sao cho:
x4+4 chia hết cho x2+ax+b
Xác định các hằng số a và b sao cho:
x4+4 chia hết cho x2+ax+b
Xác định các hằng số a và b sao cho x4+ax+b chia hết cho x2-1
Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)
sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1
ta có x4+ax+b = (x2-1)(x2+cx+d)
=>x4+ax+b=x4+cx3+dx2-x2-cx-d
Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)
x4 =x4 => 0
0x3 =cx3 => c=0
0x2=(d-1)x2 => d-1 = 0 ( lấy x2 chung)
ax=-cx => a=-c
b=-d
Từ những điều trên ta kết luận
a=0 (a=-c mà c=0)
b=1 (b=-d mà d=1)