Những câu hỏi liên quan
DS
Xem chi tiết
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
LS
Xem chi tiết
NA
Xem chi tiết
CT
Xem chi tiết
CT
21 tháng 10 2017 lúc 16:01

Giúp mình nhanh nhé, mai cô kt r

Bình luận (0)
CT
23 tháng 10 2017 lúc 20:07

Ai bik ko trả lời với ạ

Bình luận (0)
TH
Xem chi tiết
TP
6 tháng 12 2015 lúc 16:36

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

Bình luận (0)
TB
Xem chi tiết
AN
19 tháng 11 2016 lúc 10:57

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

Bình luận (0)
AN
19 tháng 11 2016 lúc 11:02

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

Bình luận (0)
AN
19 tháng 11 2016 lúc 11:08

3/ Điều kiện xác định bạn tự làm nhé

\(\frac{16}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)

\(\Leftrightarrow8x+67\sqrt{x}+1=0\)

Tới đây thì bạn xem như phương trình bậc 2 là giải tiếp được. Nhớ đối chiếu điều kiện để loại nghiệm

Bình luận (0)
VV
Xem chi tiết
BL
29 tháng 12 2019 lúc 17:15

2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :

\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
VV
29 tháng 12 2019 lúc 8:57

Giải hộ mình với mn

Bình luận (0)
 Khách vãng lai đã xóa
BL
29 tháng 12 2019 lúc 17:10

1. Áp dụng bđt Cauchy và bđt quen thuộc \(4ab\le\left(a+b\right)^2\) ta có:

\(D=\frac{ab}{a+b}+\frac{a+b}{4ab}+\frac{3\left(a+b\right)}{4ab}\) \(\ge2\sqrt{\frac{ab}{a+b}\cdot\frac{a+b}{4ab}}+\frac{6}{\left(a+b\right)^2}\)

\(\Rightarrow D\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" \(\Leftrightarrow a=b=1\)

Bình luận (0)
 Khách vãng lai đã xóa