Những câu hỏi liên quan
TG
Xem chi tiết
NT
19 tháng 3 2021 lúc 21:28

ctr nó chia hết cho 3 và 9

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
LT
10 tháng 1 2016 lúc 20:38

a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n

  =9.(111...11(n chu so 9)+2n)

  Xet 111...11(n chu so 9)+2n=111..11-n+3n

  De thay tong cac chu so cua 111....11(n chu so 1) la n

 =>111...11-n chia het cho 3

 =>111...11-n+3n chia het cho 3

 =>10^n+18n-1 chia het cho 27

Bình luận (0)
DM
Xem chi tiết
SG
9 tháng 6 2016 lúc 15:45

B = 10n + 18n - 1

B = 10n - 1 - 9n + 27n

B = 999....9 - 9n + 27n

  ( n chữ số 9)

B = 9 x ( 111...1 - n) + 27n

          ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3

                                                                                                         ( n chữ số 1)

=> 9 x ( 111...1 - n) chia hết cho 27. Mà 27n chia hết cho 27 => B chia hết cho 27

Chứng tỏ B chia hết cho 27

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
TT
9 tháng 6 2016 lúc 15:40

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
LD
Xem chi tiết
VT
31 tháng 7 2016 lúc 10:53

Dùng quy nạp nhé!!! 
10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

Bình luận (0)
EC
5 tháng 8 2016 lúc 8:24

10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

Bình luận (0)
IK
Xem chi tiết
H24
26 tháng 6 2016 lúc 17:36

10n +18n -1 = 9999...9 (n chũ số 9) +1-1+27n-9n

=(9999...9-9n) +27n

= 9.(1111...111-n) +27n

Mà ta có 111...111-n với 111...111 có n chữ số 1 luôn chia hết cho 9

=> 9(111...1-n) chia hết cho 9.9=81 mà 81 chia hết cho 27 -> 9(111...111-n) +27n chia hết choa 27

Bình luận (0)
LH
26 tháng 6 2016 lúc 17:44

Giả sử: 10n + 18n - 1 chia hết cho 27

=> 10n - 1 + 18n chia hết cho 27

=> 999..9 (n chữ số 9) + 18n chia hết cho 27

=> 9(1111...1+2n) chia hết cho 27

=> 111..1 + 2n chia hết cho 3

Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9

Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)

111....1 = 3y + k (x thuộc n)

=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)

=> 2n + 111...111 chia hết cho 3

=> 10n + 18n - 9 chia hết cho 27

Bình luận (0)
LO
Xem chi tiết
QD
26 tháng 6 2016 lúc 17:58

Giả sử: 10 n + 18n - 1 chia hết cho 27

=> 10n - 1 + 18n chia hết cho 27 

=> 999..9 (n chữ số 9) + 18n chia hết cho 27 

=> 9(1111...1+2n) chia hết cho 27 

=> 111..1 + 2n chia hết cho 3 

Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9 

Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)

111....1 = 3y + k (x thuộc n) 

=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k) 

=> 2n + 111...111 chia hết cho 3 

=> 10n + 18n - 9 chia hết cho 27 

Bình luận (0)
HA
26 tháng 6 2016 lúc 18:04

10^n +18n -1

= 10^n -1 -9n +27

= 99....9 ( n chữ số 9 ) - 9n + 27

= 9 .( 11.....1 - n ) +27n ((n c/s 1)) chia hết cho 27

Bình luận (0)
NP
Xem chi tiết
PD
17 tháng 3 2017 lúc 18:55

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)
LA
Xem chi tiết
NT
Xem chi tiết
PD
30 tháng 6 2018 lúc 16:42

a,\(10^n+18n-1\)

\(=99...9+18n\)(n-1 chữ số 9)

Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)

\(\Rightarrow999..9+18n⋮\left(3.9\right)\)

\(\Rightarrow10^n+18n-1⋮27\)

Bình luận (0)
AH
13 tháng 8 2018 lúc 9:34

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

Bình luận (0)
LD
18 tháng 8 2018 lúc 11:09

Phạm Tuấn Đạt óc....  . 10n-1 =99..9 (có n chữ số)

có n-1 tức là n=2 thì 102-1 có 1 chữ số

ahihi

Bình luận (0)