Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
YN
Xem chi tiết
NA
Xem chi tiết
NA
21 tháng 3 2017 lúc 21:14

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2S-S=1-\frac{1}{2^{20}}\)

\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.

Bình luận (0)
NC
Xem chi tiết
NU
4 tháng 2 2020 lúc 16:00

A = 1/1^2 + 1/2^2 + 1/3^2 + ... + 1/2020^2

1/2^2 < 1/1.2

1/3^2 < 1/2.3

...

1/2020^2 < 1/2019.2020

=> A < 1 + 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2019*2020

=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2020

=> A < 2 - 1/2020

=> A < 4039/2020 < 7/4

=> a < 7/4

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết
NP
23 tháng 1 2019 lúc 18:07

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}.\)

\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(\Rightarrow2A-A=1-\frac{1}{2^9}\)

\(A=1-\frac{1}{2^9}\)

=> đpcm

Bình luận (0)
NT
23 tháng 1 2019 lúc 18:10

dpcm là j vậy bn

Bình luận (0)
NM
Xem chi tiết
H24
3 tháng 1 2023 lúc 17:48

\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)

\(=1.120+3^5.120+...+3^{97}.120\)

\(=\left(1+3^5+...+3^{97}\right).120\)

\(\Rightarrow S⋮120\)

Vậy ........

Bình luận (0)
VD
Xem chi tiết
H24
3 tháng 5 2017 lúc 20:50

Lời giải:

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

Dễ thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(....\)

\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)

\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow S< 1+1-\dfrac{1}{10}\)

\(\Rightarrow S< 2-\dfrac{1}{10}\)

\(\Rightarrow S< 2\)

Bình luận (1)
BB
Xem chi tiết
IM
10 tháng 8 2016 lúc 13:25

Ta có

\(A=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}\right)\)

Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{6}.3=\frac{1}{2}\)

    \(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}< \frac{1}{9}.3=\frac{1}{3}\)

   \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}< \frac{1}{12}.3=\frac{1}{4}\)

   \(\frac{1}{15}+\frac{1}{16}< \frac{1}{10}.2=\frac{1}{5}\)

=> \(S< 2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)< 2\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\)

=> S<3 (1) 

Lập luận tương tự ta có

\(S>2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)>2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=2\)

=> S>2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

Bình luận (0)