tim so tu nhien n de 2n+1 va 7n+2 la hai so nguyen to cung nhau
tim so tu nhien n sao cho 7n+13 va 2n+4 la nguyen to cung nhau
voi n so tu nhien thoa man 6n+1 va 7n-1 la hai so tu nhien khong nguyen to cung nhau thi uoc chung lon nhat cua 6n+1 va 7n-1 la bao nhieu
voi n so tu nhien thoa man 6n+1 va 7n-1 la hai so tu nhien khong nguyen to cung nhau thi uoc chung lon nhat cua 6n+1 va 7n_1 la bao nhieu
chung minh rang voi moi so tu nhien n, cac so sau la hai so nguyen to cung nhau:
a) 7n + 10 va 5n + 7
b) 2n +3 va 4n +8
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
BAI 1: TIM SO TU NHIEN N DE MOI CAP SO SAU LA SO NGUYEN TO:
A, 7N+13 VA 2N+4
B, 12N+5 VA 9N+4
BAI 2: TIM * DE (81**)CHIA HET CHO 6;7;13
PLEASE GIUP MK.........
CMR:co vo so so tu nhien n de n +15 va n+72 la hai so nguyen to cung nhau.
cau1;tim so tu nhien n biet rang 1+2+3.........+n=1275 cau2; a.timUC cua 2n+1va 3n+1[n∈N] b.chung minh rang 7n+10 va 5n+7 la so nguyen to cung nhau. cau3;biet rang ;7a+2b⋮13 voi [a;b∈N] chung minh rang 10a+b cung ⋮ 13 cau4.tim 2 so tu nhiena;b biet; a+2b=48va UCLN [a;b]+3 BCNN[a;b]=114
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
chung to rang voi moi so tu nhien N gia tri cua 2 bieu thuc 7n+10 va 5n+7 luon la 2 so nguyen to cung nhau
Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau
Gọi ước chung của 2 số này là d
=> 7n+10 chia hết cho d
=> 5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
=> 7(5n+7) chia hết cho d
=> 35n+ 50 chia hết cho d
=> 35n+ 49 chia hết cho d
=> 35n+50 - 35n+49 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U( 1)
=> d=1
=> Nguyên tố cùng nhau
Tick mình nha các bạn
tim so tu nhien n de cac so 9n+24 va3n+4 la cac so nguyen to cung nhau
\(9n+24⋮3n+4\)
\(3\left(3n+4\right)+12⋮3n+4\)
\(12⋮3n+4\Rightarrow3n+4\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
3n + 4 | 1 | 2 | 3 | 4 | 6 | 12 |
3n | -3 | -2 | -1 | 0 | 2 | 8 |
n | -1 | -2/3 | -1/3 | 0 | 2/3 | 8/3 |
Vì n là số tự nhiên
=> Vậy ... ko xảy ra