Tìm các cặp số nguyên x,y biêt
2xy+2x+y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
tìm các cặp số nguyên (x,y) biết : 2x+xy+y=1
2x + xy + y = 1
=> x(2 + y) + y + 2 = 1 + 2
=> x(y + 2) + 1(y + 2) = 3
=> (x + 1)(y + 2) = 3
=> x + 1 và y + 2 thuộc Ư(3) = {-1; 1; -3; 3}
ta có bảng :
x+1 | -1 | 1 | -3 | 3 |
y+2 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -5 | 1 | -3 | -1 |
tìm các cặp số nguyên x và y biết x+y=4 va |2x+1|+|y-x|=5
Tìm tất cả các cặp số nguyên (x ,y ; ) sao cho (x+y)(3x+2y)2 = 2x + y -1
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)
Tìm các cặp số nguyên (x;y) thỏa mãn: y^2=3-2|2x+3|
Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)
Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)
Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)
Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)
Tìm các cặp số nguyên (x;y) thỏa (2x+1) (y-1) = -5
(2x+1)(y-1)=-5
x,y nguyên => 2x+1; y-1 nguyên
=> 2x+1; y-1\(\inƯ_{\left(-5\right)}=\left\{-5;-1;1;5\right\}\)
Ta có bảng
2x+1 | -5 | -1 | 1 | 5 |
x | -3 | -1 | 0 | 2 |
y-1 | 1 | 5 | -5 | -1 |
y | 2 | 6 | -4 | 0 |
Vậy (x;y)={-3;2);(-1;6);(0;-4);(2;0)} thỏa mãn yêu cầu đề bài
Tìm các cặp số nguyên dương x,y thỏa mãn (2x-1).(y-7)=22
\(\left(2x-1\right)\left(y-7\right)=22\)
\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)
tìm các cặp số nguyên x y sao cho xy -2x +y +1=0
\(xy-2x+y+1=0\Leftrightarrow xy-2x+y-2=-3\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-3\)
<=>(x+1)(y-2)=-3
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
y-2 | 1 | 3 | -3 | -1 |
x | -4 | -2 | 0 | 2 |
y | 3 | 5 | -1 | 1 |
Vậy ....
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
tìm các cặp số nguyên x,y sao cho xy -2x + y + 1 = 0
=> (xy-2x)+(y-2)+3 = 0
=> (y-2).(x+1)+3 = 0
=> (y-2).(x+1) = -3
Đến đó bạn dùng quan hệ ước bội mà giải nha
Tk mk nha
xy -2x + y + 1 = 0
x(y -2) + y + 1 -3 = 0-3
x(y -2) + y - 2 = -3
x(y -2) + (y - 2) = -3
(x+1)(y - 2) = -3
\(\Rightarrow\)x+1=-3 hoặc y - 2 = -3
\(\Rightarrow\)x =-3-1 hoặc y = -3+2
\(\Rightarrow\)x =-4 hoặc y = -1
Vậy. .......
Tìm các cặp số nguyên x,y biết
2xy+2x+y=-6
2xy + 2x + y = - 6
2x . ( y + 1 ) + y = - 6
2x . ( y + 1 ) + ( y + 1 ) = - 5
( y + 1 ) . ( 2x + 1 ) = - 5
=> y + 1 , 2x + 1 \(\in\)Ư ( - 5 ) = { - 5 ; - 1 ; 1 ; 5 }
Lập bảng giá trị tương ứng giá trị x , y :
y + 1 | - 5 | - 1 | 1 | 5 |
y | - 6 | - 2 | 0 | 4 |
2x + 1 | - 1 | - 5 | 5 | 1 |
x | - 1 | - 3 | 3 | 0 |
sao hình đại diện nguyễn đức thắng giống mình quá
\(2xy+2x+y=-6\)
\(2x\left(y+1\right)+y+1=-6+1\)
\(2x\left(y+1\right)+\left(y+1\right)=-5\)
\(\left(y+1\right)\left(2x+1\right)=-5\)
vì \(x,y\in Z\Rightarrow y+1\in Z;2x+1\in Z\)
\(\Rightarrow y+1\in\text{Ư}_{\left(-5\right)};2x+1\in\text{Ư}_{\left(-5\right)}\)
\(\text{Ư}_{\left(-5\right)}=\text{ }\left\{1;-1;5;-5\right\}\)
lập bảng giá trị
\(y+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(2x+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(0\) | \(-1\) | \(0\) | \(-6\) |
\(x\) | \(-3\) | \(0\) | \(3\) | \(0\) |
vậy ác cặp số \(\left(y;x\right)\) thỏa mãn là : \(\left(0;-3\right);\left(-1;0\right);\left(0;3\right);\left(-6;0\right)\)