Cmr: 5-n chia het cho n+1
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
cmr
94260 -35137 chia het cho 5
995-984+973-962 chia het cho 2 va 5
bai 2:
cho n thuoc N cmr 5n -1 chia het cho 4
Cmr với mọi số nguyên n thì :
1, (n^2+3n-1)(n+2)-n^3+2 chia het cho 5
2, (6n+1)(n+5)-(3n+5)(2n-1) chia het cho 2
cmr 55^n+1-55^n chia het 54
cmr A=n^3-n chia het cho 6
2
a) CMR: (n+1)*(n+8) chia het cho 2 voi n thuoc N
b) CMR: n^2+n chia het cho 2
a)
Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n = 0 => 1 x 8 = 8 chia hết cho 2
b)
n^2 + n = n x ( n + 1 )
mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2
a) \(A=\left(n+1\right)\left(n+8\right)\)
Nếu: \(n=2k\)thì: \(A\)\(⋮\)\(2\)
Nếu: \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(A\)\(⋮\)\(2\)
Vậy A chia hết cho 2
b) \(B=n^2+n=n\left(n+1\right)\)
Nếu: \(n=2k\)thì: \(B\)\(⋮\)\(2\)
Nếu \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(B\)\(⋮\)\(2\)
Vậy B chia hết cho 2
cmr 5^n-1 chia het cho 4
a có 5 ≡ 1 (mod 4)
=> 5^n ≡ 1 (mod 4)
=> 5^n – 1 ≡ 0 (mod 4)
=> 5^n – 1 chia hết cho 4 (đpcm).
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
CMR , với n thuộc N , ta có :
a) 5^n - 1 chia het cho 4
b) n^2 + n + 2 ko chia hết cho 5