Tìm phần dư khi chia P(x)=4x4 -3x3+2x2 -x+15 cho x2-4
Gúp mình với!!!
Câu 7. Sắp xếp các hạng tử của đa thức
dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
Câu 7. Sắp xếp các hạng tử của đa thức
giảm dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + 2x2 – 6
N(x) = - 2x2 – x4 + 4x3 – x2 -5x3 + 3x + 5 + x
a) Thu gọn và sắp xếp đa thức M(x), N(x) theo lũy thừa giảm của biến
b) Xác định hệ số cao nhất, hệ số tự do, bậc của các đa thức M(x), N(x).
c) Tính : M(x) + N(x)
d) Tính N(x) – M(x)
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)
Câu 16 Cho đa thức
M = x2 + 5x4 − 3x3 + x2 + 4x4 + 3x3 − x + 5
N = x − 5x3 − 2x2 − 8x4 + 4 x3 − x + 5
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b. Tính M+N; M- N
Câu 17. Cho đa thức A = −2 xy 2 + 3xy + 5xy 2 + 5xy + 1
a. Thu gọn đa thức A.
b. Tính giá trị của A tại x= ;y=-1
Câu 18. Cho hai đa thức
P ( x) = 2x4 − 3x2 + x -2/3 và Q( x) = x4 − x3 + x2 +5/3
a. Tính M (x) = P( x) + Q( x)
b. Tính N ( x) = P( x) − Q( x) và tìm bậc của đa thức N ( x)
Câu 19. Cho hai đa thức: f(x) = 9 – x5 + 4x - 2x3 + x2 – 7x4
g(x) = x5 – 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến
b) Tính tổng h(x) = f(x) + g(x).
c) Tìm nghiệm của đa thức h(x).
Câu 20: Cho P(x) = 2x3 – 2x – 5 ; Q(x) = –x3 + x2 + 1 – x.
Tính:
a. P(x) +Q(x);
b. P(x) − Q(x).
Câu 21: Cho đa thức f(x) = – 3x2 + x – 1 + x4 – x3– x2 + 3x4
g(x) = x4 + x2 – x3 + x – 5 + 5x3 – x2
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến. b) Tính: f(x) – g(x); f(x) + g(x)
c) Tính g(x) tại x = –1.
Câu 22: Cho đa thức P = 5x2 – 7y2 + y – 1; Q = x2 – 2y2
a) Tìm đa thức M = P – Q
b) Tính giá trị của M tại x=1/2 và y= -1/5
Câu 23 Tìm đa thức A biết A + (3x2 y − 2xy3 ) = 2x2 y − 4xy3
Câu 24 Cho P( x) = x4 − 5x + x2 + 1 và
Q( x) = 5x + 3 x2 + 5 + x2 + x4 .
a)Tìm M(x)=P(x)+Q(x)
b. Chứng tỏ M(x) không có nghiệm
Câu 25) Cho đa thức P(x) = 5x-; Q(x) = x2 – 9.; R(x) = 3x2 – 4x
a. Tính P(-1);Q(-3);R()
b. Tìm nghiệm của các đa thức trên
21:
a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+4x^3+x-5\)
b: f(x)-g(x)
=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5
=3x^4-5x^3-4x^2+4
f(x)+g(x)
=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5
=5x^4+3x^3-4x^2+2x-6
c: g(-1)=1-4-1-5=-9
Kiểm tra xem giá trị x = -2 có là nghiệm của bất phương trình sau không?
a) x + 2x2 – 3x3 + 4x4 – 5 < 2x2 – 3x3 + 4x4 – 6;
b) (-0,001)x > 0,003.
a) x + 2x2 - 3x3 + 4x4 - 5 < 2x2 - 3x3 + 4x4 - 6
⇔ x < 2x2 - 3x3 + 4x4 - 6 - 2x2 + 3x3 - 4x4 + 5 (chuyển vế - đổi dấu)
⇔ x < -1 (*)
Vì -2 < -1 nên -2 là nghiệm của bất phương trình
Vậy x = -2 là nghiệm của bất phương trình.
b) (-0,001)x > 0,003
⇔ x < -3 (chia cả hai vế cho -0,001)
Vì -2 > -3 nên -2 không phải nghiệm của bất phương trình
Vậy x = -2 không là nghiệm của bất phương trình.
Biết rằng lim x → ± ∞ a ( 2 x 3 - x 2 ) + b ( x 3 + 5 x 2 - 1 ) - c ( 3 x 3 + x 2 ) a ( 5 x 4 - x ) - b x 4 + c ( 4 x 4 + 1 ) + 2 x 2 + 5 x = 1 , với a , b , c ∈ R . Tính S = 8a +6b-3c
A. -1
B. 2
C. 1
D. 0
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
c. Tìm nghiệm của h(x)
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Thực hiện phép chia:
1. (-3x3 + 5x2 - 9x + 15) : ( 3x + 5)
2. ( 5x4 + 9x3 - 2x2 - 4x - 8) : ( x-1)
3. ( 5x3 + 14x2 + 12x + 8 ) : (x + 2)
4. ( x4 - 2x3 + 2x -1 ) : ( x2 - 1)
5. ( 5x2 - 3x3 + 15 - 9x ) : ( 5 - 3x)
6. ( -x2 + 6x3 - 26x + 21) : ( 3 -2x )
1: Sửa đề: 3x-5
\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)
2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)
=5x^2+14x^2+12x+8
3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)
5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)
a) tìm a để đa thức 4x3 - 2x2+ a chia hết cho đa thức 2x - 3
b) Tìm giá trị a để đa thức 3x3 + 2x2 + x + a chia cho đa thức x + 1 có số dư bằng 2
\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)
Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)
\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)
\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)
Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)