Những câu hỏi liên quan
NH
Xem chi tiết
NH
Xem chi tiết
H24
18 tháng 1 2021 lúc 19:27

a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)

Vậy số dư của \(3^{2021}\) cho 13 là 9.

b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)

Vậy số dư của $2008^{2008}$ cho $7$ là $1.$

P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.

Bình luận (0)
H24
Xem chi tiết
BQ
Xem chi tiết
TH
Xem chi tiết
BQ
Xem chi tiết
NT
Xem chi tiết
NH
28 tháng 1 2016 lúc 21:20

số dư là 22 .Vì so A là 52

Bình luận (0)
DT
28 tháng 1 2016 lúc 21:31

A+8: 15 và 6

A+8: bcnn cùa 15 và 6 là 30

A:30du 22

Bình luận (0)
BQ
Xem chi tiết
AC
Xem chi tiết
H24
15 tháng 3 2018 lúc 20:34

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

Bình luận (0)

Bếu hít

Bình luận (0)