Những câu hỏi liên quan
TP
Xem chi tiết
NT
Xem chi tiết
DP
Xem chi tiết
HH
Xem chi tiết
NS
14 tháng 11 2016 lúc 20:52

khó quá

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
AN
13 tháng 6 2017 lúc 11:38

Ta có:

\(\frac{n\left(n+2\right)}{\left(n+1\right)^2}=1-\frac{1}{\left(n+1\right)^2}>1-\frac{1}{n\left(n+2\right)}=1+\frac{1}{2}.\left(\frac{1}{n+2}-\frac{1}{n}\right)\)

Thế vô bài toán ta được

\(B=\frac{2.4}{3^2}+\frac{4.6}{5^2}+...+\frac{200.202}{201^2}\)

\(>1+1+...+1+\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{2}+\frac{1}{6}-\frac{1}{4}+...+\frac{1}{202}-\frac{1}{200}\right)\)

\(=100+\frac{1}{2}.\left(\frac{1}{202}-\frac{1}{2}\right)=\frac{10075}{101}>99,75\)

Bình luận (0)
TN
13 tháng 6 2017 lúc 11:51

Ta có đánh giá sau:\(\frac{n\left(n+2\right)}{\left(n+1\right)^2}=1-\frac{1}{\left(n+1\right)^2}\)

\(>1-\frac{1}{x\left(x+2\right)}=1-\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)

Suy ra \(B=\frac{2\cdot4}{3^2}+\frac{4\cdot6}{5^2}+\frac{6\cdot8}{7^2}+...+\frac{200\cdot202}{201^2}\)

\(>1-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+1-\frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)+...+1-\frac{1}{2}\left(\frac{1}{200}-\frac{1}{202}\right)\)

\(=100-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{200}-\frac{1}{202}\right)\)

\(=100-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{202}\right)\)\(=100-\frac{1}{2}\cdot\frac{50}{101}\)

\(>100-\frac{1}{2}\cdot\frac{50}{100}=100-0,25=99,75\)

Tức là \(B>99,75\) 

Bình luận (0)
TN
13 tháng 6 2017 lúc 11:51

v~ thành nhai lại rồi :V

Bình luận (0)
NT
Xem chi tiết
PQ
16 tháng 6 2018 lúc 15:11

Ta có : 

\(B=\frac{8}{9}+\frac{24}{25}+...+\frac{200.202}{201^2}\)

\(B=\frac{8}{3^2}+\frac{24}{5^2}+...+\frac{200.202}{201^2}\)

\(B=\frac{3^2-1}{3^2}+\frac{5^2-1}{5^2}+...+\frac{201^2-1}{201^2}\)

\(B=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{5^2}{5^2}-\frac{1}{5^2}+...+\frac{201^2}{201^2}-\frac{1}{201^2}\)

\(B=1-\frac{1}{3^2}+1-\frac{1}{5^2}+...+1-\frac{1}{201^2}\)

\(B=\left(1+1+...+1\right)+\left(-\frac{1}{3^2}-\frac{1}{5^2}-...-\frac{1}{201^2}\right)\)

\(B=100-\left(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{201^2}\right)\)

Lại có : 

\(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{201^2}>\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)

\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)

\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)

\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{1}{3}-\frac{1}{203}\)

\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{200}{609}\)

Suy ra : \(2B=200-\left(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}\right)>200-\frac{200}{609}\)

\(\Leftrightarrow\)\(B>100-\frac{100}{609}\)

\(\Leftrightarrow\)\(B>\frac{60800}{609}=99,\left(835...99\right)>99,75\)

Vậy \(B>99,75\)

Chúc bạn học tốt ~ 

Bình luận (0)
NT
16 tháng 6 2018 lúc 18:09

Bạn có thể giải thích tại sao lại \(2B=200-\left(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}\right)>200-\frac{200}{609}\)  từ đoạn đó xuống dưới đc ko

Bình luận (0)
AD
Xem chi tiết
NH
Xem chi tiết
NT
7 tháng 2 2016 lúc 12:44

bạn làm xong bài này chưa dạy mình với

Bình luận (0)
NA
4 tháng 4 2016 lúc 20:13

giup giai cau nay voi

Bình luận (0)
DM
24 tháng 2 2018 lúc 16:18

:$\frac{n(n+2)}{(n+1)^2}

                                          =1-\frac{1}{(x+1)^2}

                                          > 1-\frac{1}{x(x+2)}

                                          = 1-\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$

Thay lần lượt vô

Bình luận (0)