Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BQ
Xem chi tiết
NC
26 tháng 1 2018 lúc 21:18

lớp 8 thì chịu

Bình luận (0)
KS
26 tháng 1 2018 lúc 21:19

xin lỗi bạn nha ,số to quá mk ko chia đc

Bình luận (0)
BA
26 tháng 1 2018 lúc 21:53

Ta có: \(3^{2003}=\left(3^3\right)^{667}.3^2=27^{667}.3^2\)

Mà \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1^{667}\left(mod13\right)\equiv1\left(mod13\right)\)

\(\Rightarrow27^{667}.3^2\equiv1.3^2\left(mod13\right)\equiv9\left(mod13\right)\)

Vậy \(3^{2003}\) chia 13 dư 9.

Bình luận (0)
NU
Xem chi tiết
NQ
1 tháng 2 2018 lúc 13:25

Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9

Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :

27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26

Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13

=> 3^2003-9 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha

Bình luận (0)
KK
Xem chi tiết
TL
20 tháng 10 2015 lúc 21:52

33 = 27 = 1 (mod 13)

=> (33)667 = 1667  (mod 13)

=> 32001 = 1 (mod 13) 

=> 32001.32 = 1.3(mod 13)

=> 32003 = 9 (mod 13)

Bình luận (0)
H24

bài làm

33 = 27 = 1 (mod 13)

=> (33)667 = 1667  (mod 13)

=> 32001 = 1 (mod 13) 

=> 32001.32 = 1.3(mod 13)

=> 32003 = 9 (mod 13)

vậy ....................

hok tốt

Bình luận (0)
H24
12 tháng 8 2024 lúc 20:40

3^3 = 27 = 1 (mod 13)

 

=> (3^3)^667 = 1^667 (mod 13)

 

=> 3^2001 = 1 (mod 13) 

 

=> 3^2001.3^2 = 1.3^2 (mod 13)

 

=> 3^2003 = 9 (mod 13)

Vậy 3^2003 : 13 dư 9

Bình luận (0)
DV
Xem chi tiết
ND
Xem chi tiết
LM
Xem chi tiết
AH
12 tháng 8 2021 lúc 1:06

Lời giải:
Theo định lý Fermat thì:

$2002^{18}\equiv 1\pmod {19}$

$\Rightarrow (2002^{18})^{111}.2002^5\equiv 2002^5\pmod {19}$

$2002\equiv 7\pmod {19}$

$\Rightarrow 2002^5\equiv 7^5\equiv 11\pmod {19}$

Vậy $2002^{2003}$ chia $19$ dư $11$

Bình luận (0)
BP
Xem chi tiết
NM
Xem chi tiết
DT
Xem chi tiết