Những câu hỏi liên quan
DL
Xem chi tiết
XO
4 tháng 6 2021 lúc 9:35

n3 + 2012n = n3 - n + 2013n = n(n2 - 1) + 2013n = (n -1)n(n + 1) + 2013n

Nhận thấy (n - 1)n(n + 1) \(⋮\)3 (tích 3 số nguyên liên tiếp)

Lại có : 2013n \(⋮\)3 (vì 2013 \(⋮\)3)

=> (n -1)n(n + 1) + 2013n \(⋮\)3

=> n3 + 2012 \(⋮3\forall n\inℤ\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
ND
Xem chi tiết
LA
14 tháng 10 2016 lúc 19:55

n = 2 , 4 , 6, 8 

bấm đúng nha 

Bình luận (0)
BL
Xem chi tiết
LR
31 tháng 1 2016 lúc 19:25

bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?

Bình luận (0)
H24
31 tháng 1 2016 lúc 19:30

bai nay ???????????????

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
AH
29 tháng 5 2020 lúc 0:17

Lời giải:

Ta có: $n^5-2011n=(n^5-n)-2010n$

$=n(n^4-1)-2010n=n(n^2-1)(n^2+1)-2010n$

$=n(n-1)(n+1)(n^2+1)-2010n$

Vì $n, n-1, n+1$ là 3 số nguyên liên tiếp nên chắc chắn tồn tại ít nhất 1 số chẵn, và tồn tại ít nhất 1 số chia hết cho $3$

$\Rightarrow n(n-1)(n+1)(n^2+1)=n(n^2-1)(n^2+1)$ chia hết cho $2$ và chia hết cho $3$ $(*)$

Mặt khác, ta biết 1 số chính phương khi chia cho $5$ có thể có dư là $0,1,4$

Nếu $n^2$ chia $5$ dư $0$ thì $n\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$

Nếu $n^2$ chia $5$ dư $1$ thì $n^2-1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$

Nếu $n^2$ chia $5$ dư $4$ thì $n^2+1\vdots 5\Rightarrow n(n^2-1)(n^2+1)\vdots 5$ $(**)$

Từ $(**); (*)$ mà $(2,3,5)$ đôi một nguyên tố cùng nhau nên $n(n^2-1)(n^2+1)\vdots 30$

Mà $2010n\vdots 30$ do $2010\vdots 30$

Do đó $n^5-2011n=n(n^2-1)(n^2+1)-2010n\vdots 30$

Ta có đpcm.

Tóm lại $n(n^2-1)(n^2+1)\vdots 5$

Bình luận (0)
VN
Xem chi tiết
LL
Xem chi tiết
NP
17 tháng 12 2014 lúc 14:30

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

Bình luận (0)
NT
10 tháng 6 2015 lúc 11:12

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

Bình luận (1)
cc
17 tháng 7 2016 lúc 8:56

 Nguyễn Minh Trí giải kiểu j thế ?

Bình luận (0)
NT
Xem chi tiết
NM
26 tháng 10 2016 lúc 13:57

a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n

+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5 

+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5

+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5

=> Biểu thức rên chia hết cho 5 với mọi n

b/ 

+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2

+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2

=> biểu thức chia hết cho 2 với mọi n thuộc N

Bình luận (0)
DD
Xem chi tiết