2011n có chữ số tận cùng là 1 => 2011n là số lẻ
2013n có tận cùng là 9 ; 7 ; 1 ;3 => 2013n là số lẻ
2012n có tận cùng chẵn => 2012n là số chẵn
do đó tổng 3 số đã cho sẽ là : lẻ + lẻ + chẵn = chẵn ( luân chia hết cho 2 với mọi n thuộc N*) => ĐPCM
2011n có chữ số tận cùng là 1 => 2011n là số lẻ
2013n có tận cùng là 9 ; 7 ; 1 ;3 => 2013n là số lẻ
2012n có tận cùng chẵn => 2012n là số chẵn
do đó tổng 3 số đã cho sẽ là : lẻ + lẻ + chẵn = chẵn ( luân chia hết cho 2 với mọi n thuộc N*) => ĐPCM
Chứng minh không tồn tại n thuộc N* thỏa mãn 2014^2014+1 chia hết cho n^3+2012n
Tìm n thuộc N* biết [(2013n)2 + 2013n +2] chia hết cho 2
1,Chứng minh: a,a2+a chia hết cho 2
b,a2+b2-(a+b) chia hết chia 2 với mọi a và b thuộc N
2,Biết 1978m+2012n và 78m+10m cùng chia hết cho 11
Chứng minh: m và n cùng chia hết cho 11.
3, Tìm số tự nhiên n, biết:
n+S(n)=94. với S(n) là tổng các chữ số của n.
4, Tìm số N= abcd , biết:
abcd chia hết cho 11 và a=b+c và bc là số chính phương
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
Chứng minh
n.(n+1).(n+2).(n+3).(n+4) chia hết cho 5 với mọi n thuộc N.
(n+1).(3n+2) chia hết cho 2 với mọi n thuộc N
1.CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi n thuộc N
3.CMR không tồn tại n thuộc N thỏa mãn 20142014+1 chia hết cho n3+2012n
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
a)Chứng minh rằng: 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
b)chứng minh rằng a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
chứng minh rằng không tồn tại n là số tự nhiên thỏa mãn 2014^2014+1 chia hết cho n^2+2012n