Nêu định lý Pi - ta - go
hãy nêu định lý Pi-ta-go
Trong tam giác vuông; bình phương cạnh huyền bằng tổng bình phương 2 cạnh còn lại.
VD Trong tam giác ABC vuông tại A thì ta có:
AB2+AC2=BC2
Định lý Pi-ta-go là gì?
Cm định lý \(Pi-ta-go\)
Trong toán học, định lý Pytago là một liên hệ căn bản trong hình học Euclid giữa ba cạnh tam giác của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh kề còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago
Trong toán học, định lý Pytago (còn gọi là định lý Pythagore theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa bacạnh tam giác của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh kề còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago":[1]
{\displaystyle a^{2}+b^{2}=c^{2},}
cho tam giác abc vuông tại a cm định lý pi-ta-go
Nêu định lý thuận và đảo của định lý Py-ta-go ?
Thuận:
Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông.
Đảo:
Tam giác có bình phương 1 cạnh bằng tổng bình phương 2 cạnh còn lại là tam giác vuông.
Có thể ko chính xác từng chữ (do lười học bài cũ), bạn thông cảm nhé ^^!
Thuận:
Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
Đảo:
Trong một tam giác, nếu có bình phương một cạnh bẳng tổng bình phương hai cạnh còn lại thì tam giác đó là tam giác vuông
Nếu mình nhớ ko nhầm thì hình như hai định lý được phát biểu như thế này. Nếu có gì sai xin các bạn thông cảm
Thuận:
Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
Đảo:
Trong một tam giác, nếu có bình phương cạnh huyền bằng tổng bình phương hai cạnh còn lại thì tam giác đó là tam giác vuông
nếu mình nhớ ko nhầm thì hai định lý đc phát biểu như thế, có gì sai thì xin bạn thông cảm ^^
Từ hệ thức a2 = b2 + c2 - 2bc.cosA trong tam giác, hãy suy ra định lý Pi-ta-go.
Giả sử tam giác ABC vuông tại A, suy ra góc A = 90º, đặt BC = a, CA = b, AB = c
Theo định lý Cô sin trong tam giác ta có:
a2 = b2 + c2 – 2bc.cos A = b2 + c2 – 2bc.cos 90º = b2 + c2 – 2bc.0 = b2 + c2 .
Vậy trong tam giác ABC vuông tại A thì a2 = b2 + c2 (Định lý Pytago).
Cho Tam giác abc vuông tại a có ac = 8 cm ab = 6cm tính bc ( định lý pi ta go)
Áp dụng định lí Pytago ta có
\(BC^2=AB^2+AC^2\\ =\sqrt{6^2+8^2}=10\)
Áp dụng định lí Py-ta-go trong tam giác vuông ABC có
BC2= AC2+AB2
hay AC2+AB2 = BC2
82+62= BC2
64+ 36= 100
BC2= 100
BC = √100 = 10 (cm)
Định lý Pi - ta - go là gì
Pi ta go là cả định lý thuận và đảo, có thể viết định lý Pythagoras dưới dạng: Một tam giác có ba cạnh a, b và c, thì nó là tam giác vuông với góc vuông giữa a và b khi và chỉ khi a2 + b2 = c.
bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông
Bạn Dang VO Kha Ai sai rồi.Khi nói đến định lí Pi ta go có nghĩa đây là định lí thuận(Khác với Định lí Pi ta go đảo)
Định lí Pi ta go đc phát biểu như sau: Tam giác vuông ABC có góc A=90 độ thì \(BC^2=AB^2+AC^2\)
chứng minh định lý pi-ta-go?
Cách 1: Chứng minh của E. A. Coolidge
Cách chứng minh này xuất hiện trong cuốn sách về các vấn đề kinh điển thuộc học thuyết Pitago của tác giả Elisha Scott Loomis, được xuất bản lần đầu tiên bởi Hội đồng giáo viên quốc gia của môn toán học, vào năm 1927. Thật đáng tiếc, quyển sách này hiện nay không được xuất bản nữa, trong cuốn sách này có tới trên 300 cách chứng minh định lý Pitago, trong đó, có nhiều cách chứng minh tương tự nhau, và tất cả các cách chứng minh nổi tiếng đều có trong cuốn sách của Loomis.
Cách chứng minh dưới đây thì tương tự như cách chứng minh của Bhaskara trong phần “Behold!” đã giới thiệu ở bài trước. Cách chứng minh này được đăng trên tạp trí giáo dục, xuất bản hàng ngày, và tác giả của nó là cô E. A. Coolidge - là một người mù.
Dựng hình và kiểm tra
1. Vẽ một tam giác vuông và các hình vuông trên các cạnh của nó (dùng công cụ custom)
2. Kéo dài tia HA, lấy điểm A’ đối xứng với điểm H qua A bằng cách :
+ Chọn đoạn HA và điểm A
+ Chọn menu Transform --> Rotate --> degrees =180
3. Vẽ một đường thẳng đi qua điểm B và vuông góc với đoạn AA’, Vẽ điểm giao K của 2 đường này.
( Hình bên minh họa cho các bước từ 1 đến 3)
4. Vẽ hình vuông A’KLM.
(Sử dụng công cụ Custom tool như đã giới thiệu ở bài 1)
5. Vẽ Đoạn BK, GM, FL.
6. Làm ẩn đi đường BK.
7. Tô màu cho 4 mảnh trong hình vuông trên cạnh huyền.
8. Đánh dấu vectơ EJ và dịch chuyển 4 đỉnh và 4 cạnh của hình vuông BCDE theo vectơ này (để được hình vuông bên dưới hình vuông trên cạnh b có diện tích bằng diện tích hình vuông BCDE )
+ Đánh dấu theo thứ tự điểm E, J
+ Chọn menu Transform --> Mark vector
+ Đánh dấu 4 cạnh và 4 đỉnh của hình vuông BCDE
+ Chọn vào Menu Transform --> Translate.
9. Như vậy miền diện tích trên cạnh b bây giờ là a2 + b2 . Sử dụng công cụ Translator để di chuyển các các mảnh là bản sao của các mảnh trong hình
Cách 2: Chứng minh của Ann Condit