Chứng tỏ rằng \(\forall\)n \(\in\)N thì n2 + 6n + 6 ko chia hết cho 36
câu a: chứng tỏ rằng n2 + n + 1 không chia hết cho 2
câu b: chứng tỏ rằng n.(n+1) .(5n+1) chia hết cho 6
a)Nếu n=2k(kEN)
thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)
Nếu n=2k+1(kEN)
thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)
Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2
b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n
Nếu n=2k(kEN )
thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................
tương tự, n=3k;3k+1;3k+2
mỏi tay chết đi được, mấy con số còn bay đi lung tung
Gọi a = n2 + n +1.
chứng tỏ rằng a ko chia hết cho 2
a ko chia hết cho 5
Gọi A = n2 + n +1.Chứng tỏ rằng:
a ko chia hết cho 2
a ko chia hết cho 5
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
chứng minh rằng với mọi số tự nhiên n thì n2+n+6 ko chia hết cho 5
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
chứng tỏ rằng mọi số nguyên n
a, ( n + 6 ) ( n + 7 ) thì chia hết cho 2
b, n^2 + n + 3 ko chia hết cho 2
a) ta có: (n+6)(n+7) là tích của 2 số tự nhiên liên tiếp => trong đó nhất định có một số chia hết cho 2 => tích sẽ luôn luôn chia hết cho 2
b) với n=2k ( n chẵn) => n^2+n+3= 4k^2+2k+3
4k^2 chia hết cho 2k chia hết cho 2 nhưng +3 => k chia hết cho 2
với n=2k+1 ( n lẻ) => n^2+n+3=\(\left(2k+1\right)^2+2k+1+3=4k^2+6k+5\) giải thích như trên
=> k chia hết cho 2 với mọi n
chứng tỏ rằng với mọi m, n thuộc Z, nếu 5m +7n chia hết cho 19 thì 7m+6n cũng chia hết cho 19
chứng tỏ rằng:
a) (4n + 6) • (5n+7) chia hết cho 2 với mọi n
b) ( 4n + 7) • (6n + 3) không chia hết cho 2 với mọi n thuộc N
Chứng tỏ rằng :
a) (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)
Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5)
ta có
8n là số chẳn
=>8n+1 là số lẽ
hay 8n+1 không chia hết cho 2
lại có:
6n là số chẵn
=>6n+5 là số lẽ
hay 6n+5 không chia hết cho 2
suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)
b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ
Tương tự 6n+5 cũng là số lẻ
Mà tích 2 số lẻ là 1 số lẻ
Do tích 2 số lẻ không chia hết cho 2 nên
(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
Cho hỏi "tran vu lan phuong": Câu này bạn lấy ở đâu thế?