Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
C2
Xem chi tiết
HH
24 tháng 12 2019 lúc 13:48

Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|\)

\(=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right).\left(2013-2x\right)\ge0\)

                       \(\Leftrightarrow\left(2x-2\right).\left(2x-2013\right)\le0\)

                  \(\Rightarrow\hept{\begin{cases}2x-2\ge0\\2x-2013\le0\end{cases}\Rightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)

                 \(\Rightarrow Min\left(A\right)=2011\Leftrightarrow1\le x\le\frac{2013}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
VQ
Xem chi tiết
LT
11 tháng 11 2021 lúc 21:33
Thôi nhắn chả hiểu luôn
Bình luận (0)
 Khách vãng lai đã xóa
LT
11 tháng 11 2021 lúc 21:34
Chịu vì nhắn ko hiểu luôn
Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VG
28 tháng 3 2016 lúc 22:48

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Bình luận (0)
NA
Xem chi tiết
NT
13 tháng 7 2021 lúc 18:23

undefined

Bình luận (1)
NA
13 tháng 7 2021 lúc 18:22

cau A thay = bằng cộng ạ

 

Bình luận (0)
NH
13 tháng 7 2021 lúc 18:26

undefined

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 7 2016 lúc 20:08

bạn nào giải nhanh giúp mình

Bình luận (0)
HP
1 tháng 7 2016 lúc 20:11

Vì |x-2| \(\ge\) 0 với mọi x

=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x

=>MaxA=1/2

Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)

Vậy..............

Bình luận (0)
H24
Xem chi tiết
SG
24 tháng 9 2023 lúc 10:22

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

Bình luận (0)
H24
23 tháng 9 2023 lúc 23:38

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

Bình luận (0)
HM
Xem chi tiết
NQ
6 tháng 9 2021 lúc 19:47

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
3 tháng 8 2023 lúc 8:26

Nguyễn Minh Quang sai dấu câu A rồi

 

Bình luận (0)
ND
Xem chi tiết
KN
23 tháng 8 2020 lúc 20:50

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

Bình luận (0)
 Khách vãng lai đã xóa
KN
23 tháng 8 2020 lúc 20:55

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1

Bình luận (0)
 Khách vãng lai đã xóa