Những câu hỏi liên quan
NH
Xem chi tiết
KA
14 tháng 6 2017 lúc 15:56

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bình luận (0)
NK
14 tháng 6 2017 lúc 16:08

* C1 :(bz - cy)/a = (abz - acy)/a2

(cx - az)/b = (bcx - abz)/b2

(ay - bx)/c = (acy - bcx)/c2

Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c

=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0

=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0

=>bz - cy = cx - az = ay - bx = 0

*Xét bz - cy = 0

=>bz = cy

=>z/c = y/b

Chứng minh tương tự = >x/a = y/b ; x/a = z/c

=> x/a = y/b = z/c

*C2 : 

(bz - cy)/a = (abz - acy)/ax

(cx - az)/by = (bcx - abz)/by

(ay - bx)/cz = (acy - bcx)/cz

Làm tương tự như C1

Bình luận (0)
H24
28 tháng 7 2018 lúc 8:39

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

Suy ra: \(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}\). Áp dụng tính chất dãy tỉ số bằng nhau có: 

\(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}=\frac{\left(bxz-cxy\right)+\left(cxy-azy\right)+\left(azy-bxz\right)}{ax+bx+cx}\)

\(=\frac{\left(bxz-bxz\right)-\left(cxy-cxy\right)-\left(azy-azy\right)}{ax+by+cz}=\frac{0}{ax+by+cz}\)

Suy ra: \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Leftrightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

Áp dụng tính chất tỉ lệ thức ta được: \(\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}^{\left(đpcm\right)}}\)

Bình luận (0)
DS
Xem chi tiết
VT
16 tháng 10 2019 lúc 11:08

Chúc bạn học tốt!

Bình luận (0)
LD
Xem chi tiết
ZT
Xem chi tiết
BH
Xem chi tiết
DT
8 tháng 10 2015 lúc 9:38

Vì : bz-cy/a=cx-az/b=ay-bx/c

=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2  

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2  

Ap dung tính chất của dãy tỉ số bằng nhau :  

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...  

= 0/a^2+b^2+c^2=0  

Vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)  

Vì cx-az/b=0=>cx=az=>x/a=z/c (2)  

Từ (1) và (2) => x/a=y/b=z/c

Bình luận (0)
CH
Xem chi tiết
TK
Xem chi tiết
HN
14 tháng 8 2016 lúc 15:42

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\) 

\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

 

 

Bình luận (0)
HP
14 tháng 8 2016 lúc 15:33

Hỏi đáp Toán

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 11 2017 lúc 16:18

Tham khảo ở đây:

Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)