Giải phương trình nghiệm nguyên bằng hai cách:
xy - x - y = 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
help me
1, giải phương tình nghiệm nguyên dương x^2y+x+y=xy^2z+yz+7z
2,giải phương trình nghiệm tự nhiên 2^x+3^y=z^2
3,giải phương trình nghiệm nguyên dương x^2+x+1=xyz-z
Giải phương trình nghiệm nguyên 1/x + 1/y = 1/2
Giải phương trình x^2+1/x^2 ++ 1/y^2 + y^2 = 4
\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{2}\)
=>\(\frac{x+y}{xy}-\frac{1}{2}=0\)
\(\Rightarrow\frac{-\left(x-2\right)y-2x}{2xy}=0\)
=>(x-2)y-2x=0
=>x-2=0( vì x-2=0 thì nhân y-2x ms =0 )
=>x=2
=>y-2=0
=>y=2
vậy x=y=2
Giải phương trình nghiệm nguyên dương bằng phương pháp cực hạn:
1/x + 1/y +1/z =1/2
Giả sử \(z\ge y\ge x\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{x}\Rightarrow x\le6\)
xét các TH
( còn 2 biến làm tườn tự )
Bài này dùng cực hạn và xét rất nhiều giá trị, bạn cần lập bảng hay đại loại là thứ gì phải rút gọn khẩn cấp
Giải phương trình nghiệm nguyên:( x 2) (x-2)-y=y^2-4
ta có đc :
x2-4-y=y2-4
<=> x2=y2+y
<=> x2=y(y+1)
vì VP là tích của 2 số nguyên liên tiếp và VT là bình phương một số và x và y nguyên => x2=y(y+1)=0
<=> y=0 hoặc y=-1
vậy ta có cặp no(x;y):(0;0) ; (0;-1)
giải phương trình nghiệm nguyên 2(x²-y²)²=x²+y²+2z²
bn xem lại đi đề có vấn đề r kìa (ko có z)
x² + y² = 3 - xy
<=> (3/4)(4 - y²) = (x + y/2)² ≥ 0 => - 2 ≤ y ≤ 2 => y = 0; ± 1; ± 2;
=> y = 0 => x² = 3 không thoả
=> y = - 1 => x² + 1 = 3 + x => x² - x - 2 = 0 => x = - 1; x = 2
=> y = 1 => x² + 1 = 3 - x => x² + x - 2 = 0 => x = 1; x = - 2
=> y = - 2 => x² + 4 = 3 + 2x => (x - 1)² = 0 => x = 1
=> y = 2 => x² + 4 = 3 - 2x => (x + 1)² = 0 => x = - 1
KL : 6 nghiệm nguyên của pt là:
(x; y) = (- 1; - 1); (2; - 1); (1; 1); (- 2; 1); (1; - 2); (- 1; 2)
Cho x,y nguyên dương giải phương trình nghiệm nguyên sau: 3^x+112=y^2
Giải phương trình nghiệm nguyên sau:x^2+x-y^2=0
Tham khảo thử đúng không nha mn
\(x^2+x-y^2=0\)
⇔ \(\left(x^2-y^2\right)+x=0\)
⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)
⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)
⇒ \(x=y=0\)
\(\Leftrightarrow x^2+x=y^2\)
\(\Leftrightarrow4x^2+4x=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-1=\left(2y\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2y\right)^2=1\)
\(\Leftrightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=1\)
2x-2y+1 | -1 | 1 |
2x+2y+1 | -1 | 1 |
x | -1 | 0 |
y | 0 | 0 |
Vậy \(\left(x;y\right)=\left(0;0\right);\left(-1;0\right)\)
giải phương trình nghiệm nguyên x^3+5x+2=y^2
Giải phương trình nghiệm nguyên: \(x^2+y^2=3-xy\)
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2+2xy=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3-3xy\)
\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)
mà \(\left(x-y\right)^2\ge0,\forall x;y\inℤ\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\xy=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\right\}\)
\(TH2:\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
Vậy \(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right);\left(1;1\right);\left(-1;-1\right)\right\}\)