cho tam giác ABC có góc B=góc C. CMR :tam giác ABC cân tại A
cho tam giac abc vuông tại a, AB 3cm bc 5 cm so sánh góc b và c
Cho tam giác ABC có AB=6cm, AC=8cm, tia phân giác góc A cắt BC tại D. CMR: góc ADB<góc ADC.
Cho tam giác ABC cân tại A có chu vi = 20cm.Cạnh y của BC=6cm. So sánh các góc của ABC?
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
Cho tam giác ABC có 2 góc B và C nhọn. Vẽ phíc ngoài tam giác ABC các tam giác vuông cân ABD (cân tại B) và tam giác ACE (cân tại C). Vẽ DI và IK vuông góc với BC(I,K thuộc BC). CMR:
a) BI = CK
b) BC = ID + EK
cho tam giác ABC có hai góc BC nhọn Về phía ngoài tam giác ABC các tam giác vuông cân tam giác ABD(cân tại B) tam giác ACE(cân tại C). Vẽ DI và EK vuông góc với BC(I,K thuộc BC) CMR :BI=CK
Cho tam giác ABC cân tại A
có góc B=góc C= 50 độ
gọi k là điểm nằm trong tam giác ABC sao cho
góc KBC=10 độ,góc KCB = 30 độ
CMR tam giác ABK cân và tính góc BAK
ừ dữ liệu bài toán, ta có :
KBC= 10 độ, KCB=30 độ ==> BKC=140 độ ==> AKB + AKC=360-140 = 220 độ (1)
KBC=10 độ ==> ABK=40 độ ==> BAK+AKB=180-40=140 độ (2)
BCK=30 độ ==> ACK=20 độ ==> CAK +AKC=180-20=160 độ (3)
Tam giác ABC cân => góc BAC= 80 ( hay BAK + CAK=80 độ ) (4)
Từ (1) => AKB = 220 - AKC thế vào (2) ==> BAK-AKC= -80 (*)
Từ (4) ==>CAK=80-BAK thế vào (3) ==> -BAK+ AKC= 80 (**)
Giải hệ (*) (**) ==> BAK = 70 độ , AKC =150 độ
Suy nốt góc còn lại AKB = 70 độ ( do AKB= 140-BAK = 70 độ)
Suy ra tam giác ABK cân tại B ( 2 góc ở đáy bằng nhau)
Vẽ ΔMBC đều sao cho M nằm cùng phía với A so với BC
=>góc MBC=60 độ
=>góc MBA=10 độ
Xét ΔMAB và ΔMAC có
MA chung
AB=AC
MB=MC
Do đó: ΔMAB=ΔMAC
=>góc BMA=góc CMA=30 độ
Xét ΔBMA và ΔBCK có
góc MBA=góc KBC
MB=MC
góc BMA=góc KCB
Do đó: ΔBMA=ΔBCK
=>BA=BK
=>ΔBAK cân tại B
góc BAK=góc BKA=(180-40)/2=70 độ
Cho tam giác ABC Có góc B = 75 độ, góc C = 60 độ. Điểm M nằm trong tam giác ABC sao cho tam giác MBC vuông cân tại M. CMR: MA =MB
Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!
C/m:
Từ giả thiết ta có:
\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\) \(\left(.\right)\)
\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)
\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)
Giả sử \(MA\ne MB\)ta xét 2 trường hợp:
T/ hợp 1: \(MA< MB\)
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)
Nối MA.
Để chứng minh MA =MB. Ta dùng phản chứng.
G/s: \(MA\ne MB\)
Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)
Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)
Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)
+) TH1: MA> MB=MC
Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)
Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)
+) TH1: MA< MB=MC
Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)
Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)
=> Điều giả sử là sai
=> MA=MB
Làm tiếp nè:
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A_2}\)( quan hệ góc - cạnh đối diện )
Vì \(MC=MB\)nên \(MA< MC\)
Do đó: \(\widehat{C_2}< \widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))
Suy ra: \(\widehat{B}_2+\widehat{C_2}< \widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0< \widehat{BAC}\): trái với \(\left(.\right)\)
T/hợp 2: \(MA>MB\)
Xét \(\Delta MAB,\)vì \(MA>MB\)nên \(\widehat{B_2}>\widehat{A_2}\)( quan hệ góc - cạnh đối diện )
Vì \(MC=MB\)nên \(MA>MC\)
Dó đó: \(\widehat{C_2}>\widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))
Suy ra: \(\widehat{B}_2+\widehat{C_2}>\widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0>\widehat{BAC}\): trái với \(\left(.\right)\)
Vậy điều giả sử \(MA\ne MB\)là sai, hay \(MA=MB\)
Bài làm của mk hay của Cô Linh Chi đều đc nha !
cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.a,chứng minh tam giác ABC=tam giác AED . b,chứng minh tam giác ABC là tam giác cân c, gọi I là trung điểm của BE . CMR A,I,M thẳng hàng
Cho tam giác ABC cân tại A có góc A = 20 độ. Trên AB lấy D sao cho AD = BC. Vẽ DE // BC (E thuộc BC) và DE = AB
a,CMR : tam giác EDA = tam giác ABC
b, góc DAE = ?
c, CMR: Tam giác ACE đều
cho tam giác ABC cân tại A. Đường phân giác của góc B và C lần lượt cắt AC tại D và AB tại E. A) cmr: tam giác ADB = tam giác AEC B) cm: tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên C) Cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
Cho tam giác ABC có BH vuông góc với AC và 2BH=AC,góc A =75 độ
CMR tam giác ABC cân tại C