giai he phuong trinh
\(\hept{\begin{cases}2x=\sqrt{y+3}\\2y=\sqrt{z+3}\\2z=\sqrt{x+3}\end{cases}}\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
giai he phuong trinh
\(\hept{\begin{cases}x^2-4\sqrt{3x-2}+10=2y\\y^2-6\sqrt{4y-3}+11=x\end{cases}}\)
Giai he phuong trinh
1) \(\hept{\begin{cases}\left(x^4+1\right)\left(y^4+1\right)=4xy\\\sqrt[3]{x-1}-\sqrt{y-1}=1-x^3\end{cases}}\)
2) \(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\\x^2+z^2-4\left(y+z\right)+8=0\end{cases}}\)
2)
sử dụng phương pháp nhân liên hợp ở pt (1) ta được
\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)
cộng 2 vế lại được x=-y
rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu
2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{2x-3}+x=z^2-2z+3&\sqrt{2y-3}+y=x^2-2x+3&\sqrt{2x-5}+z=y^2-2y+3\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{2x-3}+x=z^2-2z+3\\\sqrt{2y-3}+y=x^2-2x+3\\\sqrt{2x-5}+z=y^2-2y+3\end{cases}}\)
a, \(\hept{\begin{cases}\left(x+y+z\right)^2=3\left(xy+yz+xz\right)\\x^{2017}+y^{2017}+z^{2017}=3^{2018}\end{cases}}\)
b,\(\hept{\begin{cases}x^3=y^3+9\\x-x^2=2y^2+4y\end{cases}}\)
c,\(\hept{\begin{cases}\sqrt{x}+\sqrt{2017-y}=\sqrt{2017}\\\sqrt{y}+\sqrt{2017-x}=\sqrt{2017}\end{cases}}\)
d,\(\hept{\begin{cases}x+y=z\\x^3+y^3=2z^2\end{cases}}\)với x,y,z là các số nguyên
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
giai hpt \(\hept{\begin{cases}\sqrt{X}.\left(1+Y\right)=2Y\\\sqrt{Y}.\left(1+Z\right)=2Z\\\sqrt{Z}.\left(1+X\right)=2X\end{cases}}\)
giải hệ \(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.