Tìm x,y \(\in\)Z sao cho \(2x^6\)+\(y^2\)-\(2x^3\)y=320
Tìm x y z biết 4 x = 3 y, 5 y = 6 Z và 2x - y + z = 320
Có: \(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)(1)
\(5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\)(2)
Từ (1); (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Áp dụng dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{2x-y+z}{18-12+10}=\frac{320}{16}=20.\)
=> x = 180; y= 240; z= 200
Tìm các số nguyên x,y thỏa mãn 2x6 + y2 - 2x3y = 320
1, Tìm \(x,y\in Z\): \(xy+\dfrac{x^3+y^3}{3}=2007\)
2, Tìm \(x,y\in Z:19x^2+28y^2=729\)
3, Tìm \(x\in Z:x^4+2x^3+2x^2+x+3\) là SCP
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Cho x,y,z>3. Tìm Min P=\(\frac{2x}{\sqrt{y+z-6}}+\frac{y}{\sqrt{z+2x-6}}+\frac{z}{\sqrt{2x+y-6}}\)
bn tham khảo câu hỏi tương tự nha!
Tìm x, y, z, cho: x/2=y/3 và y/5=z/6 và 2x-y+z=46
Ta có: \(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{6}\)và \(2x-y+z=46\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\)và \(2x-y+z=46\)
\(\Rightarrow\frac{2x}{20}=\frac{y}{15}=\frac{z}{18}\)và\(2x-y+z=46\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{y}{15}=\frac{z}{18}=\frac{2x-y+z}{20-15+18}=\frac{46}{23}=2\)
Ta có: \(\frac{x}{10}=\frac{2x}{20}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{18}=2\Rightarrow z=2.18=36\)
Vậy:\(x=20;y=30\)và\(z=36\)
tim x, y thuoc Z
sao cho x^6-x^4+2x^3+2x^2=y^2
\(x^6-x^4+2x^3+2x^2=y^2\)
\(y^2+y=x^4+x^3+x^2+x=0\left(1\right)\)
\(\Leftrightarrow y\left(y+1\right)=x\left(x^3+x^2+x+1\right)=0\)
Ta có 4 PT
\(x1=0;y1=0\)
\(x2=0;y2=-1\)
\(x3=-1;y3=0\)
\(x4=-1;y4=-1\)
tìm nghiệm nguyên của y2 - 2x3y + 2x6=320
tìm x,y € z sao cho y²=3-2|2x+3|