Tính: \(D=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003\)
tính : A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
\(=\left(1+2-3\right)+\left(-4+5+6-7\right)+...+\left(-2000+2001+2002-2003\right)\)
\(=0+0+0+...+0\)
\(=0\)
học tốt
mn giải giúp em bài toán với ạ !
BÀI 1 :TÍNH NHANH
A=3/4*5 +3/5*6 +3/6*7 +3/7*8 +...+3/99*100BÁI 2 :KHÔNG THỰC HIỆN PHÉP TÍNH , HÃY SO SÁNH TỔNG SAU VỚI 4
1999/2000 +2000/2001 +2001/2002 +2002/2003
Ta có :
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(A=3.\frac{6}{25}\)
\(A=\frac{18}{25}\)
Vậy \(A=\frac{18}{25}\)
Chúc bạn học tốt ~
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)
\(=\frac{3.4.6}{25.4}\)
\(\Rightarrow A=\frac{18}{25}\)
A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
Hãy rút gọn biểu thức A
A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
A=1+(2-3-4+5)+(6-7-8+9)+...+(1998-1999-2000+2001)+(2002-2003)
A=1+0+0+...+0+(-1)
A=1+(-1)
A=0
Tick cho mk nha
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+...+(-2000+2001+2002-2003)
A=0+0+0+...+0
A=0
Tính nhanh
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
`S = 1+2-3-5+5+6-7-8+9+10-...+1998-1999-2000+2001+2002`
có :
`(2002 - 1) :1 +1 = 2002` ( số hạng)
`2002 : 4 = 500 (dư 2)`
`=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002`
`=(-4)+(-4)+...+(-4) +2001 +2002` có `500` só `-4`
`=500 .(-4) + 2001+ 2002`
`= (-2000)+2001+2002`
`=1+2002`
`=2003`
a)1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
b)1.2.3...9-1.2.3....8-1.2.3....7.82
Làm hộ em với ạ
Tính tổng:
a, S = 1 + (-3) + 5 + (-7) + ... + 17
b, S = -2 + 4 + (-6) + 8 + ... + (-18)
c, S = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... + 1996 + 1997 - 1998 - 1999 + 2000 + 2001
d, S = 1 -3 + 5 -7 + ... + 2001 - 2003 + 2005
a, S= [1+(-3)]+[5+(-7)]+.......+[15+(-17)]
S= (-2)+(-2)+......+(-2)
Có 10 số (-2)
S= (-2) x 10 =(-20)
b, S =[(-2)+4]+[(-6)+8]+......+[16+(-18)]
S=2+2+2+......+2
Có 11 số 2
S= 2 x 11 =22
Mọi người giúp mk nha
A=1+(-2)+3+(-4)+...+2019+(-2020)
B=1+(-3)+5+(-7)+...+2001+(-2003)
C=2-4+6-8+...+1998-2000
D=1-2-3+4+5+6-7-8+9+...+2002-2003-2004+2005+2006
E=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
a) 1 - 2 - 3 + 4 +5 - 6 - 7 + ..... + 2001 - 2002 -2003 + 2004
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 2001 + 2002 - 2003 - 2004
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
1+2-3-4+5+6-7-8+9+10-...+1998-1999-2000+2001+2002