Những câu hỏi liên quan
PN
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
NH
10 tháng 2 2018 lúc 20:24

kho qua

Bình luận (0)
TN
Xem chi tiết
DH
15 tháng 10 2021 lúc 15:41

a) \(n+5=n-2+7⋮\left(n-2\right)\Leftrightarrow7⋮\left(n-2\right)\)mà \(n\)là số tự nhiên nên 

\(n-2\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\Leftrightarrow n\in\left\{-5,1,3,9\right\}\)

mà \(n\)là số tự nhiên nên \(n\in\left\{1,3,9\right\}\).

b) \(4n+27=4n+10+17=2\left(2n+5\right)+17⋮\left(2n+5\right)\Leftrightarrow17⋮\left(2n+5\right)\)mà \(n\)là số tự nhiên nên 

\(2n+5\inƯ\left(17\right)=\left\{1,17\right\}\Leftrightarrow n\in\left\{-2,6\right\}\)

mà \(n\)là số tự nhiên nên \(n=6\).

c) \(4n+49=4n+20+29=4\left(n+5\right)+29⋮\left(n+5\right)\Leftrightarrow29⋮\left(n+5\right)\)mà \(n\)là số tự nhiên nên 

\(n+5\inƯ\left(29\right)=\left\{1,29\right\}\Leftrightarrow n\in\left\{-4,24\right\}\)

mà \(n\)là số tự nhiên nên \(n=24\).

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NC
Xem chi tiết
NT
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Bình luận (0)
NT
Xem chi tiết
NQ
26 tháng 1 2018 lúc 21:45

Xét : n^2+n = n.(n+1) 

Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên n.(n+1) có tận cùng là 0 hoặc 2 hoặc 6

=> n^2+n+1 có tận cùng là 1 hoặc 3 hoặc 7 nên n^2+n+1 ko chia hết cho 1955

=> n^2+n+1 ko chia hết cho 1955

=> ko tồn tại số tự nhiên n tm bài toán

Tk mk nha

Bình luận (0)
SK
26 tháng 1 2018 lúc 22:09

WỜ TỜ FỜ?

Bình luận (0)
DM
22 tháng 7 2023 lúc 9:32

ko tồn tại nha

 

Bình luận (0)
LP
Xem chi tiết
LP
Xem chi tiết
DH
14 tháng 12 2015 lúc 22:19

nếu gọi tổng bên trái là A thì A chia hết cho 8 khi A ít nhất là A chia hết cho 4 và A phải là số chẵn.đấy là điều kiện cần,còn điều kiện bắt buộc thì A phải chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Tick nha Link Pro

Bình luận (0)